University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States.
University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States.
Free Radic Biol Med. 2018 Nov 20;128:157-164. doi: 10.1016/j.freeradbiomed.2018.02.002. Epub 2018 Feb 6.
Oxidants play an important role in the cell and are involved in many redox processes. Oxidant concentrations are maintained through coordinated production and removal systems. The dysregulation of oxidant homeostasis is a hallmark of many disease pathologies. The local oxidant microdomain is crucial for the initiation of many redox signaling events; however, methods to control oxidant product are limited. Some fluorescent proteins, including GFP, TagRFP, KillerRed, miniSOG, and their derivatives, generate oxidants in response to light. These genetically-encoded photosensitizers produce singlet oxygen and superoxide upon illumination and offer spatial and temporal control over oxidant production. In this review, we will examine the photosensitization properties of fluorescent proteins and their application to redox biology. Emerging concepts of selective oxidant species production via photosensitization and the impact of light on biological systems are discussed.
氧化剂在细胞中起着重要作用,并参与许多氧化还原过程。氧化剂浓度通过协调的产生和去除系统来维持。氧化剂动态平衡的失调是许多疾病病理的标志。局部氧化剂微区对于许多氧化还原信号事件的启动至关重要;然而,控制氧化剂产物的方法有限。一些荧光蛋白,包括 GFP、TagRFP、KillerRed、miniSOG 及其衍生物,会在光照下产生氧化剂。这些基因编码的光敏剂在光照下产生单线态氧和超氧化物,并提供对氧化剂产生的空间和时间控制。在这篇综述中,我们将研究荧光蛋白的光敏特性及其在氧化还原生物学中的应用。讨论了通过光敏化选择性产生氧化剂物种的新兴概念以及光对生物系统的影响。