Suppr超能文献

半胱氨酸硫氧化增强红色荧光蛋白的光稳定性。

Cysteine Sulfoxidation Increases the Photostability of Red Fluorescent Proteins.

作者信息

Ren Haiyan, Yang Bing, Ma Cheng, Hu Ying S, Wang Peng George, Wang Lei

机构信息

Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco , San Francisco, California 94158, United States.

Center for Diagnostics & Therapeutics and Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States.

出版信息

ACS Chem Biol. 2016 Oct 21;11(10):2679-2684. doi: 10.1021/acschembio.6b00579. Epub 2016 Sep 12.

Abstract

Photobleaching of fluorescent proteins (FPs) is a major limitation to their use in advanced microscopy, and improving photostability remains highly challenging due to limited understanding of its molecular mechanism. Here we discovered a new mechanism to increase FP photostability. Cysteine oxidation, implicated in only photobleaching before, was found to drastically enhance FP photostability to the contrary. We generated a far-red FP mStable by introducing a cysteine proximal to the chromophore. Upon illumination, this cysteine was oxidized to sulfinic and sulfonic acids, enabling mStable more photostable than its ancestor mKate2 by 12-fold and surpassing other far-red FPs. mStable outperformed in laser scanning confocal imaging and super-resolution structured illumination microscopy. Moreover, photosensitization to oxidize a cysteine similarly introduced in another FP mPlum also increased its photostability by 23-fold. This postfolding cysteine sulfoxidation cannot be simply substituted by the isosteric aspartic acid, representing a unique mechanism valuable for engineering better photostability into FPs.

摘要

荧光蛋白(FPs)的光漂白是其在先进显微镜技术中应用的主要限制因素,由于对其分子机制了解有限,提高光稳定性仍然极具挑战性。在此,我们发现了一种提高FP光稳定性的新机制。以前仅与光漂白有关的半胱氨酸氧化,结果却发现会极大地增强FP的光稳定性。我们通过在发色团附近引入一个半胱氨酸,生成了一种远红光FP——mStable。光照后,该半胱氨酸被氧化为亚磺酸和磺酸,使mStable的光稳定性比其前身mKate2提高了12倍,超过了其他远红光FPs。mStable在激光扫描共聚焦成像和超分辨率结构光照显微镜中表现出色。此外,对另一种FP——mPlum中类似引入的半胱氨酸进行氧化的光敏作用,也使其光稳定性提高了23倍。这种折叠后半胱氨酸的硫氧化不能简单地被等排天冬氨酸取代,这代表了一种独特的机制,对设计具有更好光稳定性的FPs具有重要价值。

相似文献

1
Cysteine Sulfoxidation Increases the Photostability of Red Fluorescent Proteins.
ACS Chem Biol. 2016 Oct 21;11(10):2679-2684. doi: 10.1021/acschembio.6b00579. Epub 2016 Sep 12.
2
Microfluidics-based selection of red-fluorescent proteins with decreased rates of photobleaching.
Integr Biol (Camb). 2015 Feb;7(2):263-73. doi: 10.1039/c4ib00251b.
4
Time and frequency-domain measurement of ground-state recovery times in red fluorescent proteins.
J Phys Chem B. 2015 Apr 16;119(15):4944-54. doi: 10.1021/acs.jpcb.5b00950. Epub 2015 Apr 6.
5
StayGold photostability under different illumination modes.
Sci Rep. 2024 Mar 6;14(1):5541. doi: 10.1038/s41598-024-55213-3.
6
Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein.
J Am Chem Soc. 2013 Oct 23;135(42):15841-50. doi: 10.1021/ja406860e. Epub 2013 Oct 7.
8
Improving the photostability of bright monomeric orange and red fluorescent proteins.
Nat Methods. 2008 Jun;5(6):545-51. doi: 10.1038/nmeth.1209. Epub 2008 May 4.
9
Analysis of red-fluorescent proteins provides insight into dark-state conversion and photodegradation.
Biophys J. 2011 Aug 17;101(4):961-9. doi: 10.1016/j.bpj.2011.06.055.
10
Chromophore reduction plus reversible photobleaching: how the mKate2 "photoconversion" works.
Photochem Photobiol Sci. 2021 Jun;20(6):791-803. doi: 10.1007/s43630-021-00060-8. Epub 2021 Jun 4.

引用本文的文献

2
Biospecific Chemistry for Covalent Linking of Biomacromolecules.
Chem Rev. 2024 Jul 10;124(13):8516-8549. doi: 10.1021/acs.chemrev.4c00066. Epub 2024 Jun 24.
5
Expression and Characterization of a Bright Far-red Fluorescent Protein from the Pink-Pigmented Tissues of Porites lobata.
Mar Biotechnol (NY). 2020 Feb;22(1):67-80. doi: 10.1007/s10126-019-09931-9. Epub 2019 Dec 18.
6
Monomerization of far-red fluorescent proteins.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11294-E11301. doi: 10.1073/pnas.1807449115. Epub 2018 Nov 13.
7
Enhancing fluorescent protein photostability through robot-assisted photobleaching.
Integr Biol (Camb). 2018 Jul 16;10(7):419-428. doi: 10.1039/c8ib00063h.
8
A guide to choosing fluorescent protein combinations for flow cytometric analysis based on spectral overlap.
Cytometry A. 2018 May;93(5):556-562. doi: 10.1002/cyto.a.23360. Epub 2018 Mar 13.
9
Light-induced oxidant production by fluorescent proteins.
Free Radic Biol Med. 2018 Nov 20;128:157-164. doi: 10.1016/j.freeradbiomed.2018.02.002. Epub 2018 Feb 6.
10
Genetically encoded fluorescent tags.
Mol Biol Cell. 2017 Apr 1;28(7):848-857. doi: 10.1091/mbc.E16-07-0504.

本文引用的文献

1
A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins.
J Phys Chem B. 2015 Apr 30;119(17):5444-52. doi: 10.1021/acs.jpcb.5b02271. Epub 2015 Apr 21.
2
Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein.
Nat Methods. 2014 May;11(5):572-8. doi: 10.1038/nmeth.2888. Epub 2014 Mar 16.
3
Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein.
J Am Chem Soc. 2013 Oct 23;135(42):15841-50. doi: 10.1021/ja406860e. Epub 2013 Oct 7.
4
Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity.
Nat Methods. 2013 Sep;10(9):885-8. doi: 10.1038/nmeth.2595. Epub 2013 Aug 4.
6
7
An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore.
PLoS One. 2011;6(12):e28674. doi: 10.1371/journal.pone.0028674. Epub 2011 Dec 8.
8
Analysis of red-fluorescent proteins provides insight into dark-state conversion and photodegradation.
Biophys J. 2011 Aug 17;101(4):961-9. doi: 10.1016/j.bpj.2011.06.055.
10
Fluorescent proteins at a glance.
J Cell Sci. 2011 Jan 15;124(Pt 2):157-60. doi: 10.1242/jcs.072744.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验