Department of Neuropediatrics, University of Kiel, 24098, Kiel, Germany.
Bull Math Biol. 2011 Feb;73(2):285-324. doi: 10.1007/s11538-010-9563-y. Epub 2010 Sep 4.
Decomposition of multivariate time series data into independent source components forms an important part of preprocessing and analysis of time-resolved data in neuroscience. We briefly review the available tools for this purpose, such as Factor Analysis (FA) and Independent Component Analysis (ICA), then we show how linear state space modelling, a methodology from statistical time series analysis, can be employed for the same purpose. State space modelling, a generalization of classical ARMA modelling, is well suited for exploiting the dynamical information encoded in the temporal ordering of time series data, while this information remains inaccessible to FA and most ICA algorithms. As a result, much more detailed decompositions become possible, and both components with sharp power spectrum, such as alpha components, sinusoidal artifacts, or sleep spindles, and with broad power spectrum, such as FMRI scanner artifacts or epileptic spiking components, can be separated, even in the absence of prior information. In addition, three generalizations are discussed, the first relaxing the independence assumption, the second introducing non-stationarity of the covariance of the noise driving the dynamics, and the third allowing for non-Gaussianity of the data through a non-linear observation function. Three application examples are presented, one electrocardigram time series and two electroencephalogram (EEG) time series. The two EEG examples, both from epilepsy patients, demonstrate the separation and removal of various artifacts, including hum noise and FMRI scanner artifacts, and the identification of sleep spindles, epileptic foci, and spiking components. Decompositions obtained by two ICA algorithms are shown for comparison.
将多元时间序列数据分解为独立的源分量是神经科学中解析时变数据的预处理和分析的重要组成部分。我们简要回顾了为此目的而提供的工具,例如因子分析 (FA) 和独立成分分析 (ICA),然后展示了如何将线性状态空间建模(一种来自统计时间序列分析的方法)用于相同的目的。状态空间建模是经典 ARMA 建模的推广,非常适合利用时间序列数据的时间顺序中编码的动态信息,而 FA 和大多数 ICA 算法无法访问此信息。因此,可以进行更详细的分解,并且可以分离具有尖锐功率谱的分量,例如 alpha 分量、正弦伪影或睡眠纺锤波,以及具有宽功率谱的分量,例如 fMRI 扫描仪伪影或癫痫发作分量,即使没有先验信息也是如此。此外,还讨论了三种推广,第一种放宽了独立性假设,第二种引入了驱动动力学的噪声协方差的非平稳性,第三种通过非线性观测函数允许数据的非高斯性。给出了三个应用示例,一个心电图时间序列和两个脑电图 (EEG) 时间序列。这两个 EEG 示例均来自癫痫患者,演示了各种伪影的分离和去除,包括嗡嗡声和 fMRI 扫描仪伪影,以及睡眠纺锤波、癫痫灶和尖峰分量的识别。为了进行比较,还展示了两种 ICA 算法的分解结果。