Suppr超能文献

多变量分析应用于神经发育障碍的胎儿、新生儿和儿科磁共振成像。

Multivariate analyses applied to fetal, neonatal and pediatric MRI of neurodevelopmental disorders.

作者信息

Levman Jacob, Takahashi Emi

机构信息

Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street #456, Boston, MA 02115, USA ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.

出版信息

Neuroimage Clin. 2015 Oct 3;9:532-44. doi: 10.1016/j.nicl.2015.09.017. eCollection 2015.

Abstract

Multivariate analysis (MVA) is a class of statistical and pattern recognition methods that involve the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of medical neuroimaging-related challenges including identifying variables associated with a measure of clinical importance (i.e. patient outcome), creating diagnostic tests, assisting in characterizing developmental disorders, understanding disease etiology, development and progression, assisting in treatment monitoring and much more. Compared to adults, imaging of developing immature brains has attracted less attention from MVA researchers. However, remarkable MVA research growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to neurodevelopmental disorders in fetal, neonatal and pediatric magnetic resonance imaging (MRI) of the brain. The goal of this manuscript is to provide a concise review of the state of the scientific literature on studies employing brain MRI and MVA in a pre-adult population. Neurological developmental disorders addressed in the MVA research contained in this review include autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia and more. While the results of this review demonstrate considerable interest from the scientific community in applications of MVA technologies in pediatric/neonatal/fetal brain MRI, the field is still young and considerable research growth remains ahead of us.

摘要

多变量分析(MVA)是一类统计和模式识别方法,涉及对每个样本包含多个测量值的数据进行处理。MVA可用于应对各种与医学神经成像相关的挑战,包括识别与具有临床重要性的指标(即患者预后)相关的变量、创建诊断测试、协助表征发育障碍、理解疾病病因、发展和进展、协助治疗监测等等。与成年人相比,发育中未成熟大脑的成像在MVA研究人员中受到的关注较少。然而,近年来MVA研究有了显著增长。本文呈现了一项系统文献综述的结果,该综述聚焦于应用于胎儿、新生儿和小儿脑磁共振成像(MRI)中神经发育障碍的MVA技术。本手稿的目的是对在成人前人群中采用脑MRI和MVA的研究的科学文献现状进行简要综述。本综述中MVA研究所涉及的神经发育障碍包括自闭症谱系障碍、注意力缺陷多动障碍、癫痫、精神分裂症等等。虽然本综述的结果表明科学界对MVA技术在小儿/新生儿/胎儿脑MRI中的应用有相当大的兴趣,但该领域仍处于起步阶段,我们面前仍有相当大的研究增长空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a04f/4625213/c615318695db/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验