Suppr超能文献

一种基于网络特征描述的低维方法。

A low dimensional approach on network characterization.

作者信息

Li Benjamin Y S, Zhan Choujun, Yeung Lam F, Ko King T, Yang Genke

机构信息

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, Hong Kong.

Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.

出版信息

PLoS One. 2014 Oct 16;9(10):e109383. doi: 10.1371/journal.pone.0109383. eCollection 2014.

Abstract

In many applications, one may need to characterize a given network among a large set of base networks, and these networks are large in size and diverse in structure over the search space. In addition, the characterization algorithms are required to have low volatility and with a small circle of uncertainty. For large datasets, these algorithms are computationally intensive and inefficient. However, under the context of network mining, a major concern of some applications is speed. Hence, we are motivated to develop a fast characterization algorithm, which can be used to quickly construct a graph space for analysis purpose. Our approach is to transform a network characterization measure, commonly formulated based on similarity matrices, into simple vector form signatures. We shall show that the [Formula: see text] similarity matrix can be represented by a dyadic product of two N-dimensional signature vectors; thus the network alignment process, which is usually solved as an assignment problem, can be reduced into a simple alignment problem based on separate signature vectors.

摘要

在许多应用中,人们可能需要在大量基础网络中对给定网络进行特征描述,并且这些网络在搜索空间中规模庞大且结构多样。此外,特征描述算法需要具有低波动性和小的不确定性范围。对于大型数据集,这些算法计算量很大且效率低下。然而,在网络挖掘的背景下,一些应用的主要关注点是速度。因此,我们有动力开发一种快速特征描述算法,该算法可用于快速构建用于分析目的的图空间。我们的方法是将通常基于相似性矩阵制定的网络特征描述度量转换为简单的向量形式签名。我们将表明,[公式:见原文]相似性矩阵可以由两个N维签名向量的二元积表示;因此,通常作为分配问题求解的网络对齐过程可以简化为基于单独签名向量的简单对齐问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6a/4199607/c056def2d822/pone.0109383.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验