Suppr超能文献

使用高维度基因组数据对甲状腺结节进行分子分类。

Molecular classification of thyroid nodules using high-dimensionality genomic data.

机构信息

Veracyte, Inc., 7000 Shoreline Court Suite 250, South San Francisco, California 94080, USA.

出版信息

J Clin Endocrinol Metab. 2010 Dec;95(12):5296-304. doi: 10.1210/jc.2010-1087. Epub 2010 Sep 8.

Abstract

OBJECTIVE

We set out to develop a molecular test that distinguishes benign and malignant thyroid nodules using fine-needle aspirates (FNA).

DESIGN

We used mRNA expression analysis to measure more than 247,186 transcripts in 315 thyroid nodules, comprising multiple subtypes. The data set consisted of 178 retrospective surgical tissues and 137 prospectively collected FNA samples. Two classifiers were trained separately on surgical tissues and FNAs. The performance was evaluated using an independent set of 48 prospective FNA samples, which included 50% with indeterminate cytopathology.

RESULTS

Performance of the tissue-trained classifier was markedly lower in FNAs than in tissue. Exploratory analysis pointed to differences in cellular heterogeneity between tissues and FNAs as the likely cause. The classifier trained on FNA samples resulted in increased performance, estimated using both 30-fold cross-validation and an independent test set. On the test set, negative predictive value and specificity were estimated to be 96 and 84%, respectively, suggesting clinical utility in the management of patients considering surgery. Using in silico and in vitro mixing experiments, we demonstrated that even in the presence of 80% dilution with benign background, the classifier can correctly recognize malignancy in the majority of FNA samples.

CONCLUSIONS

The FNA-trained classifier was able to classify an independent set of FNAs in which substantial RNA degradation had occurred and in the presence of blood. High tolerance to dilution makes the classifier useful in routine clinical settings where sampling error may be a concern. An ongoing multicenter clinical trial will allow us to validate molecular test performance on a larger independent test set of prospectively collected thyroid FNAs.

摘要

目的

我们旨在开发一种使用细针抽吸(FNA)区分良性和恶性甲状腺结节的分子检测方法。

设计

我们使用 mRNA 表达分析测量了 315 个甲状腺结节中的超过 247186 个转录本,包括多个亚型。该数据集由 178 个回顾性手术组织和 137 个前瞻性采集的 FNA 样本组成。两个分类器分别在手术组织和 FNA 上进行训练。使用包含 50%不确定细胞学的 48 个前瞻性 FNA 样本的独立集来评估性能。

结果

组织训练的分类器在 FNA 中的性能明显低于组织。探索性分析表明,组织和 FNA 之间细胞异质性的差异可能是造成这种情况的原因。在 FNA 样本上训练的分类器提高了性能,这是通过 30 倍交叉验证和独立测试集来估计的。在测试集上,阴性预测值和特异性估计分别为 96%和 84%,这表明在考虑手术的患者管理中具有临床应用价值。通过计算机模拟和体外混合实验,我们证明即使在良性背景下存在 80%的稀释,该分类器也可以正确识别大多数 FNA 样本中的恶性肿瘤。

结论

在存在大量 RNA 降解和血液的情况下,FNA 训练的分类器能够对独立的 FNA 样本进行分类。高稀释容忍度使分类器在常规临床环境中很有用,因为采样误差可能是一个问题。正在进行的多中心临床试验将使我们能够在更大的前瞻性收集的甲状腺 FNA 独立测试集中验证分子检测的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验