Suppr超能文献

四组 miRNA 可准确地区分细针抽吸的恶性和良性甲状腺不定性病变。

A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration.

机构信息

Division of Endocrine Surgery, Department of Surgery, Department of Pathology, Institute for Computational Biomedicine, NY 10021, USA.

出版信息

Clin Cancer Res. 2012 Apr 1;18(7):2032-8. doi: 10.1158/1078-0432.CCR-11-2487. Epub 2012 Feb 20.

Abstract

PURPOSE

Indeterminate thyroid lesions on fine needle aspiration (FNA) harbor malignancy in about 25% of cases. Hemi- or total thyroidectomy has, therefore, been routinely advocated for definitive diagnosis. In this study, we analyzed miRNA expression in indeterminate FNA samples and determined its prognostic effects on final pathologic diagnosis.

EXPERIMENTAL DESIGN

A predictive model was derived using 29 ex vivo indeterminate thyroid lesions on FNA to differentiate malignant from benign tumors at a tertiary referral center and validated on an independent set of 72 prospectively collected in vivo FNA samples. Expression levels of miR-222, miR-328, miR-197, miR-21, miR-181a, and miR-146b were determined using reverse transcriptase PCR. A statistical model was developed using the support vector machine (SVM) approach.

RESULTS

A SVM model with four miRNAs (miR-222, miR-328, miR-197, and miR-21) was initially estimated to have 86% predictive accuracy using cross-validation. When applied to the 72 independent in vivo validation samples, performance was actually better than predicted with a sensitivity of 100% and specificity of 86%, for a predictive accuracy of 90% in differentiating malignant from benign indeterminate lesions. When Hurthle cell lesions were excluded, overall accuracy improved to 97% with 100% sensitivity and 95% specificity.

CONCLUSIONS

This study shows that that the expression of miR-222, miR-328, miR-197, and miR-21 combined in a predictive model is accurate at differentiating malignant from benign indeterminate thyroid lesions on FNA. These findings suggest that FNA miRNA analysis could be a useful adjunct in the management algorithm of patients with thyroid nodules.

摘要

目的

细针穿刺(FNA)的不确定甲状腺病变恶性肿瘤约占 25%。因此,半甲状腺切除术或全甲状腺切除术已被常规推荐用于明确诊断。在这项研究中,我们分析了不确定的 FNA 样本中的 miRNA 表达,并确定其对最终病理诊断的预后影响。

实验设计

使用 29 个在三级转诊中心的 FNA 中的不确定甲状腺病变来建立一个预测模型,以区分恶性和良性肿瘤,并在 72 个前瞻性收集的体内 FNA 样本的独立组中进行验证。使用逆转录 PCR 测定 miR-222、miR-328、miR-197、miR-21、miR-181a 和 miR-146b 的表达水平。使用支持向量机(SVM)方法建立统计模型。

结果

使用 SVM 模型和四个 miRNA(miR-222、miR-328、miR-197 和 miR-21),最初估计在交叉验证中有 86%的预测准确性。当应用于 72 个独立的体内验证样本时,性能实际上优于预测,恶性与良性不确定病变的敏感性为 100%,特异性为 86%,预测准确率为 90%。当排除 Hurthle 细胞病变时,整体准确性提高到 97%,敏感性为 100%,特异性为 95%。

结论

这项研究表明,miR-222、miR-328、miR-197 和 miR-21 的表达结合在预测模型中,可准确区分 FNA 的恶性与良性不确定甲状腺病变。这些发现表明,FNA miRNA 分析可能是甲状腺结节患者管理算法的有用辅助手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验