Suppr超能文献

基于组学数据的机器学习分析进行患者分层的生物标志物发现研究:范围综述。

Biomarker discovery studies for patient stratification using machine learning analysis of omics data: a scoping review.

机构信息

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

出版信息

BMJ Open. 2021 Dec 6;11(12):e053674. doi: 10.1136/bmjopen-2021-053674.

Abstract

OBJECTIVE

To review biomarker discovery studies using omics data for patient stratification which led to clinically validated FDA-cleared tests or laboratory developed tests, in order to identify common characteristics and derive recommendations for future biomarker projects.

DESIGN

Scoping review.

METHODS

We searched PubMed, EMBASE and Web of Science to obtain a comprehensive list of articles from the biomedical literature published between January 2000 and July 2021, describing clinically validated biomarker signatures for patient stratification, derived using statistical learning approaches. All documents were screened to retain only peer-reviewed research articles, review articles or opinion articles, covering supervised and unsupervised machine learning applications for omics-based patient stratification. Two reviewers independently confirmed the eligibility. Disagreements were solved by consensus. We focused the final analysis on omics-based biomarkers which achieved the highest level of validation, that is, clinical approval of the developed molecular signature as a laboratory developed test or FDA approved tests.

RESULTS

Overall, 352 articles fulfilled the eligibility criteria. The analysis of validated biomarker signatures identified multiple common methodological and practical features that may explain the successful test development and guide future biomarker projects. These include study design choices to ensure sufficient statistical power for model building and external testing, suitable combinations of non-targeted and targeted measurement technologies, the integration of prior biological knowledge, strict filtering and inclusion/exclusion criteria, and the adequacy of statistical and machine learning methods for discovery and validation.

CONCLUSIONS

While most clinically validated biomarker models derived from omics data have been developed for personalised oncology, first applications for non-cancer diseases show the potential of multivariate omics biomarker design for other complex disorders. Distinctive characteristics of prior success stories, such as early filtering and robust discovery approaches, continuous improvements in assay design and experimental measurement technology, and rigorous multicohort validation approaches, enable the derivation of specific recommendations for future studies.

摘要

目的

回顾使用组学数据进行患者分层的生物标志物发现研究,这些研究导致了经过临床验证的 FDA 批准的测试或实验室开发的测试,以确定共同特征,并为未来的生物标志物项目提供建议。

设计

范围审查。

方法

我们在 PubMed、EMBASE 和 Web of Science 上进行搜索,以获取 2000 年 1 月至 2021 年 7 月间发表的生物医学文献中描述使用统计学习方法为患者分层得出的经过临床验证的生物标志物特征的综合文章列表。所有文件都经过筛选,仅保留同行评议的研究文章、综述文章或观点文章,涵盖基于组学的患者分层的监督和无监督机器学习应用。两位审查员独立确认合格性。有分歧的通过协商解决。我们将最终分析重点放在经过最高水平验证的基于组学的生物标志物上,即开发的分子特征作为实验室开发的测试或 FDA 批准的测试获得临床批准。

结果

总体而言,有 352 篇文章符合资格标准。对经过验证的生物标志物特征的分析确定了多个共同的方法学和实际特征,这些特征可能解释了成功的测试开发并指导未来的生物标志物项目。这些特征包括选择研究设计以确保模型构建和外部测试有足够的统计能力、非靶向和靶向测量技术的适当组合、先验生物学知识的整合、严格的过滤和纳入/排除标准,以及发现和验证的统计和机器学习方法的充分性。

结论

虽然大多数来自组学数据的经过临床验证的生物标志物模型都是为个性化肿瘤学开发的,但非癌症疾病的首次应用表明了多元组学生物标志物设计用于其他复杂疾病的潜力。先前成功案例的独特特征,如早期过滤和稳健的发现方法、不断改进的检测设计和实验测量技术,以及严格的多队列验证方法,为未来的研究提供了具体的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e464/8650485/6d1644c4c2f8/bmjopen-2021-053674f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验