ITQB-UNL, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
Colloids Surf B Biointerfaces. 2011 Jan 1;82(1):46-53. doi: 10.1016/j.colsurfb.2010.08.012. Epub 2010 Aug 14.
Fullerene (C(60)), the third carbon allotrope, is a classical engineered material with the potential application in biomedicine. However, extremely high hydrophobicity of fullerene hampers its direct biomedical evaluation and application. In this work, we investigated the solubilization of fullerene using 9 different solubility enhancers: Tween 20, Tween 60, Tween 80, Triton X-100, PVP, polyoxyethylene (10) lauryl ether, n-dodecyl trimethylammonium chloride, myristyl trimethylammonium bromide and sodium dodecyl sulphate and evaluated its antioxidant activity in biorelevant media. The presence of C(60) entrapped in surfactant micelles was confirmed by UV/VIS spectrometry. The efficacy of each modifier was evaluated by chemometric analysis using experimental data for investigating the relationship between solubilization and particle size distribution. Hierarchical clustering and principal component analysis was applied and showed that non-ionic surfactants provide better solubilization efficacy (>85%). A correlation was established (r=0.975) between the degree of solubilization and the surfactant structure. This correlation may be used for prediction of C(60) solubilization with non-tested solubility modifiers. Since the main potential biomedical applications of fullerene are based on its free radical quenching ability, we tested the antioxidant potential of fullerene micellar solutions. Lipid peroxidation tests showed that the micellar solutions of fullerene with Triton and polyoxyethylene lauryl ether kept high radical scavenging activity, comparable to that of aqueous suspension of fullerene and BHT. The results of this work provide a platform for further solubilization and testing of pristine fullerene and its hydrophobic derivatives in a biological benign environment.
富勒烯(C(60)),第三种碳同素异形体,是一种具有潜在生物医学应用的经典工程材料。然而,富勒烯极高的疏水性阻碍了其直接的生物医学评估和应用。在这项工作中,我们使用 9 种不同的增溶剂来研究富勒烯的溶解情况:吐温 20、吐温 60、吐温 80、Triton X-100、聚乙烯吡咯烷酮、聚氧乙烯(10)月桂醚、十二烷基三甲基氯化铵、十四烷基三甲基溴化铵和十二烷基硫酸钠,并在生物相关介质中评估了其抗氧化活性。通过紫外/可见光谱证实了 C(60)被包裹在表面活性剂胶束中的存在。通过使用实验数据进行化学计量分析来评估每种改性剂的效果,以研究溶解与颗粒分布之间的关系。应用了层次聚类和主成分分析,结果表明非离子表面活性剂提供了更好的溶解效果(>85%)。建立了(r=0.975)溶解程度与表面活性剂结构之间的相关性。这种相关性可用于预测未测试的增溶剂对 C(60)的溶解情况。由于富勒烯的主要潜在生物医学应用基于其自由基猝灭能力,我们测试了富勒烯胶束溶液的抗氧化潜力。脂质过氧化试验表明,含有 Triton 和聚氧乙烯月桂基醚的富勒烯胶束溶液保持了高自由基清除活性,与富勒烯水悬浮液和 BHT 的活性相当。这项工作的结果为在生物友好环境中进一步溶解和测试原始富勒烯及其疏水性衍生物提供了一个平台。