Suppr超能文献

数字乳腺断层合成中的肿块特征:在投影视图和重建切片中机器学习的比较。

Characterization of masses in digital breast tomosynthesis: comparison of machine learning in projection views and reconstructed slices.

机构信息

Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Med Phys. 2010 Jul;37(7):3576-86. doi: 10.1118/1.3432570.

Abstract

PURPOSE

In digital breast tomosynthesis (DBT), quasi-three-dimensional (3D) structural information is reconstructed from a small number of 2D projection view (PV) mammograms acquired over a limited angular range. The authors developed preliminary computer-aided diagnosis (CADx) methods for classification of malignant and benign masses and compared the effectiveness of analyzing lesion characteristics in the reconstructed DBT slices and in the PVs.

METHODS

A data set of MLO view DBT of 99 patients containing 107 masses (56 malignant and 51 benign) was collected at the Massachusetts General Hospital with IRB approval. The DBTs were obtained with a GE prototype system which acquired 11 PVs over a 50 degree arc. The authors reconstructed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique. The region of interest (ROI) containing the mass was marked by a radiologist in the DBT volume and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subsequent processes were fully automated. For classification of masses using the DBT-slice approach, the mass on each slice was segmented by an active contour model initialized with adaptive k-means clustering. A spiculation likelihood map was generated by analysis of the gradient directions around the mass margin and spiculation features were extracted from the map. The rubber band straightening transform (RBST) was applied to a band of pixels around the segmented mass boundary. The RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which run-length statistics texture features were extracted. Morphological features including those from the normalized radial length were designed to describe the mass shape. A feature space composed of the spiculation features, texture features, and morphological features extracted from the central slice alone and seven feature spaces obtained by averaging the corresponding features from three to 19 slices centered at the central slice were compared. For classification of masses using the PV approach, a feature extraction process similar to that described above for the DBT approach was performed on the ROIs from the individual PVs. Six feature spaces obtained from the central PV alone and by averaging the corresponding features from three to 11 PVs were formed. In each feature space for either the DBT-slice or the PV approach, a linear discriminant analysis classifier with stepwise feature selection was trained and tested using a two-loop leave-one-case-out resampling procedure. Simplex optimization was used to guide feature selection automatically within the training set in each leave-one-case-out cycle. The performance of the classifiers was evaluated by the area (Az) under the receiver operating characteristic curve.

RESULTS

The test Az values from the DBT-slice approach ranged from 0.87 +/- 0.03 to 0.93 +/- 0.02, while those from the PV approach ranged from 0.78 +/- 0.04 to 0.84 +/- 0.04. The highest test Az of 0.93 +/- 0.02 from the nine-DBT-slice feature space was significantly (p = 0.006) better than the highest test Az of 0.84 +/- 0.04 from the nine-PV feature space.

CONCLUSION

The features of breast lesions extracted from the DBT slices consistently provided higher classification accuracy than those extracted from the PV images.

摘要

目的

在数字乳腺断层摄影术(DBT)中,从在有限角度范围内获取的少量 2D 投影视图(PV)乳腺摄影片中重建准三维(3D)结构信息。作者开发了用于恶性和良性肿块分类的初步计算机辅助诊断(CADx)方法,并比较了在重建的 DBT 切片中以及在 PV 中分析病变特征的效果。

方法

在马萨诸塞州综合医院(MGH)收集了一组 99 例 MLO 视图 DBT 的数据,其中包含 107 个肿块(56 个恶性和 51 个良性),并获得了 IRB 的批准。DBT 是使用 GE 原型系统获得的,该系统在 50 度的弧线上采集了 11 个 PV。作者使用同时代的代数重建技术以 1mm 的切片间隔重建 DBT。在 DBT 体中由放射科医生标记包含肿块的感兴趣区域(ROI),并根据成像几何形状从相应的 PV 上导出相应的 ROI。随后的过程完全自动化。使用 DBT 切片方法对肿块进行分类时,通过使用自适应 K-均值聚类初始化的主动轮廓模型对每个切片上的肿块进行分割。通过分析肿块边缘周围的梯度方向生成一个分叶状可能性图,并从该图中提取分叶状特征。应用橡皮筋拉直变换(RBST)对分割的肿块边界周围的像素带进行处理。对 RBST 图像进行水平和垂直方向的 Sobel 滤波增强,从其中提取运行长度统计纹理特征。设计了包括归一化径向长度特征在内的形态学特征来描述肿块的形状。由单独的中央切片以及从中央切片中心的三到十九个切片的平均特征组成的七个特征空间的分叶状特征、纹理特征和形态学特征组成的特征空间进行比较。使用与 DBT 方法类似的特征提取过程对来自各个 PV 的 ROI 进行分类。仅从中央 PV 获得的六个特征空间以及从三到十一个 PV 获得的相应特征的平均特征形成。在 DBT 切片或 PV 方法的每个特征空间中,都使用带有逐步特征选择的线性判别分析分类器进行训练和测试,并使用两轮留一病例的重采样过程进行。在每个留一病例的循环中,使用单纯形优化自动指导训练集中的特征选择。通过接收器操作特征曲线下的面积(Az)评估分类器的性能。

结果

DBT 切片方法的测试 Az 值范围为 0.87 +/- 0.03 至 0.93 +/- 0.02,而 PV 方法的测试 Az 值范围为 0.78 +/- 0.04 至 0.84 +/- 0.04。来自九个 DBT 切片特征空间的最高测试 Az 值为 0.93 +/- 0.02,显著(p = 0.006)优于来自九个 PV 特征空间的最高测试 Az 值 0.84 +/- 0.04。

结论

从 DBT 切片中提取的乳房病变特征比从 PV 图像中提取的特征提供了更高的分类准确性。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验