Suppr超能文献

专用乳腺CT成像中用于肿块特征描述的多标记定量放射组学

Multi-marker quantitative radiomics for mass characterization in dedicated breast CT imaging.

作者信息

Caballo Marco, Pangallo Domenico R, Sanderink Wendelien, Hernandez Andrew M, Lyu Su Hyun, Molinari Filippo, Boone John M, Mann Ritse M, Sechopoulos Ioannis

机构信息

Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.

Biolab, Department of Electronics and Telecommunication, Politecnico di Torino, Torino, 10129, Italy.

出版信息

Med Phys. 2021 Jan;48(1):313-328. doi: 10.1002/mp.14610. Epub 2020 Dec 10.

Abstract

PURPOSE

To develop and evaluate the diagnostic performance of an algorithm for multi-marker radiomic-based classification of breast masses in dedicated breast computed tomography (bCT) images.

METHODS

Over 1000 radiomic descriptors aimed at quantifying mass and border heterogeneity, morphology, and margin sharpness were developed and implemented. These included well-established texture and shape feature descriptors, which were supplemented with additional approaches for contour irregularity quantification, spicule and lobe detection, characterization of degree of infiltration, and differences in peritumoral compartments. All descriptors were extracted from a training set of 202 bCT masses (133 benign and 69 malignant), and their individual diagnostic performance was investigated in terms of area under the receiver operating characteristics (ROC) curve (AUC) of single-feature-based linear discriminant analysis (LDA) classifiers. Subsequently, the most relevant descriptors were selected through a multiple-step feature selection process (including stability analysis, statistical significance, evaluation of feature interaction, and dimensionality reduction), and used to develop a final LDA radiomic model for classification of benign and malignant masses, which was then tested on an independent test set of 82 cases (45 benign and 37 malignant).

RESULTS

The majority of the individual radiomic descriptors showed, on the training set, an AUC value deriving from a linear decision boundary higher than 0.65, with the lower limit of the associated 95% confidence interval (C.I.) not overlapping with random chance (AUC = 0.5). The final LDA radiomic model resulted in a test set AUC of 0.90 (95% C.I. 0.80-0.96).

CONCLUSIONS

The proposed multi-marker radiomic approach achieved high diagnostic accuracy in bCT mass classification, using a radiomic signature based on different feature types. While future studies with larger datasets are needed to further validate these results, quantitative radiomics applied to bCT shows potential to improve the breast cancer diagnosis pipeline.

摘要

目的

开发并评估一种基于多标记物影像组学的算法在专用乳腺计算机断层扫描(bCT)图像中对乳腺肿块进行分类的诊断性能。

方法

开发并应用了1000多个旨在量化肿块和边界异质性、形态及边缘清晰度的影像组学描述符。这些描述符包括成熟的纹理和形状特征描述符,并辅以用于轮廓不规则性量化、毛刺和叶状结构检测、浸润程度表征以及瘤周区域差异分析的其他方法。所有描述符均从包含202个bCT肿块(133个良性和69个恶性)的训练集中提取,并根据基于单特征的线性判别分析(LDA)分类器的受试者操作特征(ROC)曲线下面积(AUC)来研究其个体诊断性能。随后,通过多步骤特征选择过程(包括稳定性分析、统计显著性、特征交互评估和降维)选择最相关的描述符,并用于开发用于良性和恶性肿块分类的最终LDA影像组学模型,然后在包含82个病例(45个良性和37个恶性)的独立测试集上进行测试。

结果

在训练集上,大多数个体影像组学描述符显示,源于线性决策边界的AUC值高于0.65,其相关95%置信区间(C.I.)的下限不与随机概率(AUC = 0.5)重叠。最终的LDA影像组学模型在测试集上的AUC为0.90(95% C.I. 0.80 - 0.96)。

结论

所提出的基于多标记物的影像组学方法在bCT肿块分类中实现了较高的诊断准确性,使用了基于不同特征类型的影像组学特征。虽然需要更大数据集的未来研究来进一步验证这些结果,但应用于bCT的定量影像组学显示出改善乳腺癌诊断流程的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b51a/7898616/5fba7ee3c053/MP-48-313-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验