Suppr超能文献

基于盲源分离的脑磁图信号去伪影的定量评估。

Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation.

机构信息

Signal Processing and Multimedia Communications, School of Computing and Mathematics, University of Plymouth, Plymouth, PL4 8AA, UK.

出版信息

Ann Biomed Eng. 2011 Aug;39(8):2274-86. doi: 10.1007/s10439-011-0312-7. Epub 2011 Apr 21.

Abstract

The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity.

摘要

脑磁图(MEG)受到不需要的信号的污染,这些信号被称为伪迹。其中一些最重要的伪迹是心脏伪迹(CA)和眼动伪迹(OA),以及电源线噪声(PLN)。盲源分离(BSS)已被用于减少数据中伪迹的影响。有很多基于 BSS 的伪迹去除方法,但很少有比较分析。在这项研究中,用五种广泛使用的 BSS(AMUSE、SOBI、JADE、扩展 Infomax 和 FastICA)和一种约束 BSS(cBSS)技术对 26 名受试者的 MEG 背景活动进行了处理。然后,用客观标准来量化 BSS 算法、epoch 长度和伪迹检测指标的几种组合,以自动降低 CA、OA 和 PLN。结果表明,cBSS 是去除 CA 的非常合适的方法。此外,AMUSE 或 SOBI 与基于熵或功率标准的伪迹检测指标的组合可以降低 OA。最后,通过谱指标降低了 PLN。这些发现证实了 BSS 在帮助去除 MEG 背景活动中的伪迹方面的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验