Suppr超能文献

细菌趋化作用中直接和间接结合配体的信号转导差异。

Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis.

机构信息

Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany.

出版信息

EMBO J. 2010 Oct 20;29(20):3484-95. doi: 10.1038/emboj.2010.224. Epub 2010 Sep 10.

Abstract

In chemotaxis of Escherichia coli and other bacteria, extracellular stimuli are perceived by transmembrane receptors that bind their ligands either directly, or indirectly through periplasmic-binding proteins (BPs). As BPs are also involved in ligand uptake, they provide a link between chemotaxis and nutrient utilization by cells. However, signalling by indirectly binding ligands remains much less understood than signalling by directly binding ligands. Here, we compared intracellular responses mediated by both types of ligands and developed a new mathematical model for signalling by indirectly binding ligands. We show that indirect binding allows cells to better control sensitivity to specific ligands in response to their nutrient environment and to coordinate chemotaxis with ligand transport, but at the cost of the dynamic range being much narrower than for directly binding ligands. We further demonstrate that signal integration by the chemosensory complexes does not depend on the type of ligand. Overall, our data suggest that the distinction between signalling by directly and indirectly binding ligands is more physiologically important than the traditional distinction between high- and low-abundance receptors.

摘要

在大肠杆菌和其他细菌的趋化性中,细胞外刺激被跨膜受体感知,这些受体直接或通过周质结合蛋白(BPs)间接结合其配体。由于 BPs 也参与配体的摄取,它们在细胞的趋化性和营养物质利用之间提供了联系。然而,间接结合配体的信号转导比直接结合配体的信号转导理解得要少得多。在这里,我们比较了这两种类型的配体介导的细胞内反应,并为间接结合配体的信号转导开发了一个新的数学模型。我们表明,间接结合允许细胞更好地控制对特定配体的敏感性,以响应其营养环境,并协调趋化性与配体运输,但代价是动态范围比直接结合配体窄得多。我们进一步证明,化学感受复合物的信号整合不依赖于配体的类型。总的来说,我们的数据表明,直接和间接结合配体的信号转导之间的区别比传统的高丰度和低丰度受体之间的区别在生理学上更为重要。

相似文献

1
Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis.
EMBO J. 2010 Oct 20;29(20):3484-95. doi: 10.1038/emboj.2010.224. Epub 2010 Sep 10.
2
Simultaneous high gain and wide dynamic range in a model of bacterial chemotaxis.
IET Syst Biol. 2007 Jul;1(4):222-9. doi: 10.1049/iet-syb:20070003.
3
Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response.
EMBO J. 2011 May 4;30(9):1719-29. doi: 10.1038/emboj.2011.77. Epub 2011 Mar 25.
5
Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12159-64. doi: 10.1073/pnas.1205307109. Epub 2012 Jul 9.
6
Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio.
J Bacteriol. 2010 Apr;192(7):1796-800. doi: 10.1128/JB.01507-09. Epub 2010 Jan 29.
7
Robustness analysis of the E. coli chemosensory system to perturbations in chemoattractant concentrations.
Bioinformatics. 2007 Apr 1;23(7):875-81. doi: 10.1093/bioinformatics/btm028. Epub 2007 Jan 31.
8
Theoretical results for chemotactic response and drift of E. coli in a weak attractant gradient.
J Theor Biol. 2010 Sep 7;266(1):99-106. doi: 10.1016/j.jtbi.2010.06.012. Epub 2010 Jun 15.

引用本文的文献

1
Thermal shift assay to identify ligands for bacterial sensor proteins.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf033.
2
Role of a single MCP in evolutionary adaptation of for swimming in planktonic and structured environments.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0022925. doi: 10.1128/aem.00229-25. Epub 2025 Mar 25.
3
Signal integration and adaptive sensory diversity tuning in Escherichia coli chemotaxis.
Cell Syst. 2024 Jul 17;15(7):628-638.e8. doi: 10.1016/j.cels.2024.06.003. Epub 2024 Jul 8.
4
Potassium-mediated bacterial chemotactic response.
Elife. 2024 Jun 4;12:RP91452. doi: 10.7554/eLife.91452.
5
Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2309251121. doi: 10.1073/pnas.2309251121. Epub 2024 Jan 9.
7
Discovery of a New Chemoeffector for Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing.
ACS Bio Med Chem Au. 2022 Mar 18;2(4):386-394. doi: 10.1021/acsbiomedchemau.1c00055. eCollection 2022 Aug 17.
8
Bacterial chemotaxis to saccharides is governed by a trade-off between sensing and uptake.
Biophys J. 2022 Jun 7;121(11):2046-2059. doi: 10.1016/j.bpj.2022.05.003. Epub 2022 May 6.
9
The ecological roles of bacterial chemotaxis.
Nat Rev Microbiol. 2022 Aug;20(8):491-504. doi: 10.1038/s41579-022-00709-w. Epub 2022 Mar 15.
10
The role of solute binding proteins in signal transduction.
Comput Struct Biotechnol J. 2021 Mar 26;19:1786-1805. doi: 10.1016/j.csbj.2021.03.029. eCollection 2021.

本文引用的文献

1
Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio.
J Bacteriol. 2010 Apr;192(7):1796-800. doi: 10.1128/JB.01507-09. Epub 2010 Jan 29.
2
Variable sizes of Escherichia coli chemoreceptor signaling teams.
Mol Syst Biol. 2008;4:211. doi: 10.1038/msb.2008.49. Epub 2008 Aug 5.
3
Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
PLoS Comput Biol. 2008 Jan;4(1):e1. doi: 10.1371/journal.pcbi.0040001. Epub 2007 Nov 20.
4
A concentration-dependent switch in the bacterial response to temperature.
Nat Cell Biol. 2007 Sep;9(9):1098-100. doi: 10.1038/ncb1632. Epub 2007 Aug 12.
5
In vivo measurement by FRET of pathway activity in bacterial chemotaxis.
Methods Enzymol. 2007;423:365-91. doi: 10.1016/S0076-6879(07)23017-4.
6
Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis.
Biophys J. 2007 Apr 1;92(7):2329-37. doi: 10.1529/biophysj.106.097808. Epub 2007 Jan 5.
7
Precise adaptation in bacterial chemotaxis through "assistance neighborhoods".
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13040-4. doi: 10.1073/pnas.0603101103. Epub 2006 Aug 21.
8
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
9
Chemosensing in Escherichia coli: two regimes of two-state receptors.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1786-91. doi: 10.1073/pnas.0507438103. Epub 2006 Jan 30.
10
An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli.
Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17354-9. doi: 10.1073/pnas.0506961102. Epub 2005 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验