多器官衰竭和组蛋白 H4 K16 乙酰化在 DNA 损伤修复中发挥重要作用,通过调节 DNA 损伤修复蛋白 Mdc1 的募集来实现。
MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1.
机构信息
Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
出版信息
Mol Cell Biol. 2010 Nov;30(22):5335-47. doi: 10.1128/MCB.00350-10. Epub 2010 Sep 13.
MOF (MYST1) is the major enzyme to catalyze acetylation of histone H4 lysine 16 (K16) and is highly conserved through evolution. Using a conditional knockout mouse model and the derived mouse embryonic fibroblast cell lines, we showed that loss of Mof led to a global reduction of H4 K16 acetylation, severe G(2)/M cell cycle arrest, massive chromosome aberration, and defects in ionizing radiation-induced DNA damage repair. We further showed that although early DNA damage sensing and signaling by ATM were normal in Mof-null cells, the recruitment of repair mediator protein Mdc1 and its downstream signaling proteins 53bp1 and Brca1 to DNA damage foci was completely abolished. Mechanistic studies suggested that Mof-mediated H4 K16 acetylation and an intact acidic pocket on H2A.X were essential for the recruitment of Mdc1. Removal of Mof and its associated proteins phenocopied a charge-neutralizing mutant of H2A.X. Given the well-characterized H4-H2A trans interactions in regulating higher-order chromatin structure, our study revealed a novel chromatin-based mechanism that regulates the DNA damage repair process.
MOF(MYST1)是催化组蛋白 H4 赖氨酸 16(K16)乙酰化的主要酶,在进化过程中高度保守。使用条件性敲除小鼠模型和衍生的小鼠胚胎成纤维细胞系,我们表明 Mof 的缺失导致 H4 K16 乙酰化的全面减少、严重的 G2/M 细胞周期停滞、大量染色体畸变以及电离辐射诱导的 DNA 损伤修复缺陷。我们进一步表明,尽管 Mof 缺失细胞中 ATM 的早期 DNA 损伤感应和信号转导正常,但修复介体蛋白 Mdc1 及其下游信号蛋白 53bp1 和 Brca1 向 DNA 损伤焦点的募集完全被废除。机制研究表明,Mof 介导的 H4 K16 乙酰化和 H2A.X 上完整的酸性口袋对于 Mdc1 的募集至关重要。去除 Mof 及其相关蛋白模拟了 H2A.X 的电荷中和突变体。鉴于在调节高级染色质结构方面 H4-H2A 相互作用的特征,我们的研究揭示了一种新的基于染色质的机制,该机制调节 DNA 损伤修复过程。