Institute of Molecular Cancer Research, University of Zürich, 8057 Zürich, Switzerland.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14944-9. doi: 10.1073/pnas.1100959108.
The bacterial pathogen Helicobacter pylori chronically infects the human gastric mucosa and is the leading risk factor for the development of gastric cancer. The molecular mechanisms of H. pylori-associated gastric carcinogenesis remain ill defined. In this study, we examined the possibility that H. pylori directly compromises the genomic integrity of its host cells. We provide evidence that the infection introduces DNA double-strand breaks (DSBs) in primary and transformed murine and human epithelial and mesenchymal cells. The induction of DSBs depends on the direct contact of live bacteria with mammalian cells. The infection-associated DNA damage is evident upon separation of nuclear DNA by pulse field gel electrophoresis and by high-magnification microscopy of metaphase chromosomes. Bacterial adhesion (e.g., via blood group antigen-binding adhesin) is required to induce DSBs; in contrast, the H. pylori virulence factors vacuolating cytotoxin A, γ-glutamyl transpeptidase, and the cytotoxin-associated gene (Cag) pathogenicity island are dispensable for DSB induction. The DNA discontinuities trigger a damage-signaling and repair response involving the sequential ataxia telangiectasia mutated (ATM)-dependent recruitment of repair factors--p53-binding protein (53BP1) and mediator of DNA damage checkpoint protein 1 (MDC1)--and histone H2A variant X (H2AX) phosphorylation. Although most breaks are repaired efficiently upon termination of the infection, we observe that prolonged active infection leads to saturation of cellular repair capabilities. In summary, we conclude that DNA damage followed by potentially imprecise repair is consistent with the carcinogenic properties of H. pylori and with its mutagenic properties in vitro and in vivo and may contribute to the genetic instability and frequent chromosomal aberrations that are a hallmark of gastric cancer.
幽门螺杆菌(Helicobacter pylori)是一种细菌病原体,它会慢性感染人类胃黏膜,是导致胃癌发生的主要危险因素。然而,幽门螺杆菌引起的胃癌发生的分子机制仍不清楚。在本研究中,我们研究了幽门螺杆菌是否直接损害宿主细胞的基因组完整性。我们的研究结果表明,幽门螺杆菌感染会在原代和转化的鼠类和人类上皮细胞和间充质细胞中引入 DNA 双链断裂(DSB)。DSB 的诱导依赖于活细菌与哺乳动物细胞的直接接触。通过脉冲场凝胶电泳分离核 DNA 以及高倍显微镜观察中期染色体,可观察到与感染相关的 DNA 损伤。细菌黏附(例如通过血型抗原结合黏附素)是诱导 DSB 所必需的;相比之下,幽门螺杆菌的毒力因子空泡毒素 A、γ-谷氨酰转肽酶和细胞毒素相关基因(Cag)致病岛对于诱导 DSB 是可有可无的。这些 DNA 不连续性触发了一个损伤信号转导和修复反应,涉及到 ATM 依赖性的修复因子募集顺序,包括 p53 结合蛋白(53BP1)和 DNA 损伤检查点蛋白 1 (MDC1),以及组蛋白 H2A 变体 X(H2AX)磷酸化。尽管大多数断裂在感染终止后能有效地修复,但我们观察到,长期的活跃感染会导致细胞修复能力的饱和。综上所述,我们的结论是,DNA 损伤后可能会发生不精确的修复,这与幽门螺杆菌的致癌特性以及它在体外和体内的致突变特性一致,并且可能导致胃癌的遗传不稳定性和频繁的染色体异常。