Suppr超能文献

大型自组装的网格蛋白晶格在没有足够衔接蛋白的情况下会自发解体。

Large self-assembled clathrin lattices spontaneously disassemble without sufficient adaptor proteins.

机构信息

TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America.

Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2022 Mar 21;18(3):e1009969. doi: 10.1371/journal.pcbi.1009969. eCollection 2022 Mar.

Abstract

Clathrin-coated structures must assemble on cell membranes to internalize receptors, with the clathrin protein only linked to the membrane via adaptor proteins. These structures can grow surprisingly large, containing over 20 clathrin, yet they often fail to form productive vesicles, instead aborting and disassembling. We show that clathrin structures of this size can both form and disassemble spontaneously when adaptor protein availability is low, despite high abundance of clathrin. Here, we combine recent in vitro kinetic measurements with microscopic reaction-diffusion simulations and theory to differentiate mechanisms of stable vs unstable clathrin assembly on membranes. While in vitro conditions drive assembly of robust, stable lattices, we show that concentrations, geometry, and dimensional reduction in physiologic-like conditions do not support nucleation if only the key adaptor AP-2 is included, due to its insufficient abundance. Nucleation requires a stoichiometry of adaptor to clathrin that exceeds 1:1, meaning additional adaptor types are necessary to form lattices successfully and efficiently. We show that the critical nucleus contains ~25 clathrin, remarkably similar to sizes of the transient and abortive structures observed in vivo. Lastly, we quantify the cost of bending the membrane under our curved clathrin lattices using a continuum membrane model. We find that the cost of bending the membrane could be largely offset by the energetic benefit of forming curved rather than flat structures, with numbers comparable to experiments. Our model predicts how adaptor density can tune clathrin-coated structures from the transient to the stable, showing that active energy consumption is therefore not required for lattice disassembly or remodeling during growth, which is a critical advance towards predicting productive vesicle formation.

摘要

网格蛋白包被结构必须在细胞膜上组装以内化受体,网格蛋白蛋白仅通过衔接蛋白与膜连接。这些结构可以惊人地生长得很大,包含超过 20 个网格蛋白,但它们经常无法形成有生产力的小泡,而是中止和解体。我们表明,当衔接蛋白可用性低时,即使网格蛋白丰富,这种大小的网格蛋白结构也可以自发地形成和解体。在这里,我们结合最近的体外动力学测量结果与微观反应扩散模拟和理论,以区分膜上稳定与不稳定网格蛋白组装的机制。虽然体外条件驱动了强大、稳定的晶格的组装,但我们表明,如果仅包括关键衔接物 AP-2,则由于其丰度不足,生理样条件下的浓度、几何形状和维度降低不会支持成核。核形成需要衔接物与网格蛋白的化学计量比超过 1:1,这意味着需要额外的衔接物类型才能成功高效地形成晶格。我们表明,临界核包含约 25 个网格蛋白,与体内观察到的瞬态和中止结构的大小惊人地相似。最后,我们使用连续体膜模型量化了我们弯曲的网格蛋白晶格下弯曲膜的成本。我们发现,弯曲膜的成本可以很大程度上被形成弯曲而不是平坦结构的能量优势所抵消,其数量与实验相当。我们的模型预测了衔接蛋白密度如何将网格蛋白包被结构从瞬态调整为稳定,表明在生长过程中晶格解体或重塑不需要主动能量消耗,这是朝着预测有生产力的小泡形成迈出的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a2/8979592/f376eb6a169a/pcbi.1009969.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验