Suppr超能文献

微成型阵列用于分离贴壁细胞。

Micromolded arrays for separation of adherent cells.

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Lab Chip. 2010 Nov 7;10(21):2917-24. doi: 10.1039/c0lc00186d. Epub 2010 Sep 13.

Abstract

We present an efficient, yet inexpensive, approach for isolating viable single cells or colonies from a mixed population. This cell microarray platform possesses innovations in both the array manufacture and the manner of target cell release. Arrays of microwells with bases composed of detachable concave elements, termed microrafts, were fabricated by a dip-coating process using a polydimethylsiloxane mold as the template and the array substrate. This manufacturing approach enabled the use of materials other than photoresists to create the array elements. Thus microrafts possessing low autofluorescence could be fabricated for fluorescence-based identification of cells. Cells plated on the microarray settled and attached at the center of the wells due to the microrafts' concavity. Individual microrafts were readily dislodged by the action of a needle inserted through the compliant polymer substrate. The hard polymer material (polystyrene or epoxy resin) of which the microrafts were composed protected the cells from damage by the needle. For cell analysis and isolation, cells of interest were identified using a standard inverted microscope and microrafts carrying target cells were dislodged with the needle. The released cells/microrafts could be efficiently collected, cultured and clonally expanded. During the separation and collection procedures, the cells remained adherent and provided a measure of protection during manipulation, thus providing an extremely high single-cell cloning rate (>95%). Generation of a transfected cell line based on expression of a fluorescent protein demonstrated an important application for performing on-chip cell separations.

摘要

我们提出了一种高效且廉价的方法,用于从混合群体中分离出有活力的单细胞或菌落。这种细胞微阵列平台在阵列制造和靶细胞释放方式上都有创新。采用浸涂工艺,使用聚二甲基硅氧烷模具作为模板和阵列衬底,制造出具有可拆卸凹面元件(称为微筏)基底的微孔阵列。这种制造方法能够使用除光致抗蚀剂以外的材料来创建阵列元件。因此,可以制造具有低自发荧光的微筏,用于基于荧光的细胞识别。由于微筏的凹面,接种在微阵列上的细胞会在孔的中心沉降和附着。通过插入到柔性聚合物衬底中的针的作用,单个微筏很容易被移开。由微筏组成的硬聚合物材料(聚苯乙烯或环氧树脂)保护细胞免受针的损伤。对于细胞分析和分离,使用标准倒置显微镜识别感兴趣的细胞,并使用针将携带靶细胞的微筏移开。释放的细胞/微筏可以被有效地收集、培养和克隆扩增。在分离和收集过程中,细胞保持附着状态,并在操作过程中提供一定的保护,从而提供了极高的单细胞克隆率(>95%)。基于荧光蛋白表达生成转染细胞系证明了在芯片上进行细胞分离的重要应用。

相似文献

1
Micromolded arrays for separation of adherent cells.
Lab Chip. 2010 Nov 7;10(21):2917-24. doi: 10.1039/c0lc00186d. Epub 2010 Sep 13.
2
Isolation and manipulation of living adherent cells by micromolded magnetic rafts.
Biomicrofluidics. 2011 Sep;5(3):32002-3200212. doi: 10.1063/1.3608133. Epub 2011 Sep 20.
3
Array of Biodegradable Microraftsfor Isolation and Implantation of Living, Adherent Cells.
RSC Adv. 2013 Jun 28;3(24):9264-9272. doi: 10.1039/C3RA41764F.
4
Array-Based Platform To Select, Release, and Capture Epstein-Barr Virus-Infected Cells Based on Intercellular Adhesion.
Anal Chem. 2015 Dec 15;87(24):12281-9. doi: 10.1021/acs.analchem.5b03579. Epub 2015 Nov 23.
5
Broadening cell selection criteria with micropallet arrays of adherent cells.
Cytometry A. 2007 Oct;71(10):866-74. doi: 10.1002/cyto.a.20424.
6
Automated microraft platform to identify and collect non-adherent cells successfully gene-edited with CRISPR-Cas9.
Biosens Bioelectron. 2017 May 15;91:175-182. doi: 10.1016/j.bios.2016.12.019. Epub 2016 Dec 10.
7
Laser-based directed release of array elements for efficient collection into targeted microwells.
Analyst. 2013 Feb 21;138(3):831-8. doi: 10.1039/c2an36342a. Epub 2012 Dec 5.
8
Microcup arrays for the efficient isolation and cloning of cells.
Anal Chem. 2010 Apr 15;82(8):3161-7. doi: 10.1021/ac100434v.
9
A technology of a different sort: microraft arrays.
Lab Chip. 2021 Sep 7;21(17):3204-3218. doi: 10.1039/d1lc00506e. Epub 2021 Aug 4.
10
Collection and expansion of single cells and colonies released from a micropallet array.
Anal Chem. 2007 Mar 15;79(6):2359-66. doi: 10.1021/ac062180m. Epub 2007 Feb 9.

引用本文的文献

1
Development of large-scale gastruloid array to identify aberrant developmental phenotypes.
APL Bioeng. 2025 Jun 10;9(2):026121. doi: 10.1063/5.0269550. eCollection 2025 Jun.
2
Low-cost robotic manipulation of live microtissues for cancer drug testing.
Sci Adv. 2025 May 16;11(20):eads1631. doi: 10.1126/sciadv.ads1631. Epub 2025 May 14.
3
Advances in Single-Cell Techniques for Linking Phenotypes to Genotypes.
Cancer Heterog Plast. 2024;1(1). doi: 10.47248/chp2401010004. Epub 2024 Jul 25.
4
A novel high-throughput microwell outgrowth assay for HIV-infected cells.
J Virol. 2024 Mar 19;98(3):e0179823. doi: 10.1128/jvi.01798-23. Epub 2024 Feb 20.
5
Automated microarray platform for single-cell sorting and collection of lymphocytes following HIV reactivation.
Bioeng Transl Med. 2023 Jun 21;8(5):e10551. doi: 10.1002/btm2.10551. eCollection 2023 Sep.
6
Adding a Chemical Biology Twist to CRISPR Screening.
Isr J Chem. 2023 Feb;63(1-2). doi: 10.1002/ijch.202200056. Epub 2022 Oct 18.
7
Scalable Additive Construction of Arrayed Microstructures with Encoded Properties for Bioimaging.
Micromachines (Basel). 2022 Aug 25;13(9):1392. doi: 10.3390/mi13091392.
8
Microraft arrays for serial-killer CD19 chimeric antigen receptor T cells and single cell isolation.
Cytometry A. 2023 Mar;103(3):208-220. doi: 10.1002/cyto.a.24678. Epub 2022 Aug 8.
9
A technology of a different sort: microraft arrays.
Lab Chip. 2021 Sep 7;21(17):3204-3218. doi: 10.1039/d1lc00506e. Epub 2021 Aug 4.
10
Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors.
Nat Methods. 2020 Jun;17(6):636-642. doi: 10.1038/s41592-020-0826-8. Epub 2020 May 11.

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
Microcup arrays for the efficient isolation and cloning of cells.
Anal Chem. 2010 Apr 15;82(8):3161-7. doi: 10.1021/ac100434v.
3
Micropallet arrays with poly(ethylene glycol) walls.
Lab Chip. 2008 May;8(5):734-40. doi: 10.1039/b800286j. Epub 2008 Apr 4.
4
Photoresist with low fluorescence for bioanalytical applications.
Anal Chem. 2007 Nov 15;79(22):8774-80. doi: 10.1021/ac071528q. Epub 2007 Oct 20.
5
Broadening cell selection criteria with micropallet arrays of adherent cells.
Cytometry A. 2007 Oct;71(10):866-74. doi: 10.1002/cyto.a.20424.
6
Collection and expansion of single cells and colonies released from a micropallet array.
Anal Chem. 2007 Mar 15;79(6):2359-66. doi: 10.1021/ac062180m. Epub 2007 Feb 9.
7
Micropallet arrays for the separation of single, adherent cells.
Anal Chem. 2007 Jan 15;79(2):682-7. doi: 10.1021/ac0615706.
8
Micropatterning of living cells on a heterogeneously wetted surface.
Langmuir. 2006 Sep 12;22(19):8257-62. doi: 10.1021/la061602k.
9
Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers.
J Colloid Interface Sci. 2006 Jan 15;293(2):364-75. doi: 10.1016/j.jcis.2005.06.068. Epub 2005 Aug 1.
10
Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials.
J Am Chem Soc. 2005 Jul 20;127(28):10096-100. doi: 10.1021/ja051977c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验