Suppr超能文献

基于细胞间黏附作用的用于分选、释放和捕获爱泼斯坦-巴尔病毒感染细胞的阵列平台。

Array-Based Platform To Select, Release, and Capture Epstein-Barr Virus-Infected Cells Based on Intercellular Adhesion.

作者信息

Attayek Peter J, Hunsucker Sally A, Wang Yuli, Sims Christopher E, Armistead Paul M, Allbritton Nancy L

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States.

Department of Chemistry, University of North Carolina , Chapel HillNorth Carolina 27599, United States.

出版信息

Anal Chem. 2015 Dec 15;87(24):12281-9. doi: 10.1021/acs.analchem.5b03579. Epub 2015 Nov 23.

Abstract

Microraft arrays were developed to select and separate cells based on a complex phenotype, weak intercellular adhesion, without knowledge of cell-surface markers or intracellular proteins. Since the cells were also not competent to bind to a culture surface, a method to encapsulate nonadherent cells within a gelatin plug on the concave microraft surface was developed, enabling release and collection of the cells without the need for cell attachment to the microraft surface. After microraft collection, the gelatin was liquified to release the cell(s) for culture or analysis. A semiautomated release and collection device for the microrafts demonstrated 100 ± 0% collection efficiency of the microraft while increasing throughput 5-fold relative to that of manual release and collection. Using the microraft array platform along with the gelatin encapsulation method, single cells that were not surface-attached were isolated with a 100 ± 0% efficiency and a 96 ± 4% postsort single-cell cloning efficiency. As a demonstration, Epstein-Barr virus-infected lymphoblastoid cell lines (EBV-LCL) were isolated based on their intercellular adhesive properties. The identified cell colonies were collected with a 100 ± 0% sorting efficiency and a postsort viability of 87 ± 3%. When gene expression analysis of the EBV latency-associated gene, EBNA-2, was performed, there was no difference in expression between blasting or weakly adhesive cells and nonblasting or nonadhesive cells. Microraft arrays are a versatile method enabling separation of cells based on complicated and as yet poorly understood cell phenotypes.

摘要

微筏阵列的开发目的是基于复杂表型、弱细胞间黏附来选择和分离细胞,而无需了解细胞表面标志物或细胞内蛋白质。由于这些细胞也无法黏附于培养表面,因此开发了一种将非黏附细胞封装在凹面微筏表面的明胶塞内的方法,从而能够在无需细胞黏附于微筏表面的情况下释放和收集细胞。微筏收集后,将明胶液化以释放细胞用于培养或分析。一种用于微筏的半自动释放和收集装置显示微筏的收集效率为100±0%,同时通量相对于手动释放和收集提高了5倍。使用微筏阵列平台以及明胶封装方法,未表面黏附的单细胞以100±0%的效率被分离出来,分选后单细胞克隆效率为96±4%。作为一个示例,基于细胞间黏附特性分离出了爱泼斯坦-巴尔病毒感染的淋巴母细胞系(EBV-LCL)。所鉴定的细胞集落以100±0%的分选效率和87±3%的分选后活力被收集。当对EBV潜伏相关基因EBNA-2进行基因表达分析时,增殖或弱黏附细胞与非增殖或非黏附细胞之间的表达没有差异。微筏阵列是一种通用方法,能够基于复杂且尚未完全理解的细胞表型来分离细胞。

相似文献

1
Array-Based Platform To Select, Release, and Capture Epstein-Barr Virus-Infected Cells Based on Intercellular Adhesion.
Anal Chem. 2015 Dec 15;87(24):12281-9. doi: 10.1021/acs.analchem.5b03579. Epub 2015 Nov 23.
4
Simultaneous detection of the two main proliferation driving EBV encoded proteins, EBNA-2 and LMP-1 in single B cells.
J Immunol Methods. 2012 Nov 30;385(1-2):60-70. doi: 10.1016/j.jim.2012.08.008. Epub 2012 Aug 18.
7
Epstein-Barr virus latent genes.
Exp Mol Med. 2015 Jan 23;47(1):e131. doi: 10.1038/emm.2014.84.
10
Epstein-Barr virus nuclear antigen 3A partially coincides with EBNA3C genome-wide and is tethered to DNA through BATF complexes.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):554-9. doi: 10.1073/pnas.1422580112. Epub 2014 Dec 24.

引用本文的文献

1
Unveiling the Potential of Single-Cell Encapsulation in Biomedical Applications: Current Advances and Future Perspectives.
Small Sci. 2024 Mar 25;4(5):2300332. doi: 10.1002/smsc.202300332. eCollection 2024 May.
2
Automated microarray platform for single-cell sorting and collection of lymphocytes following HIV reactivation.
Bioeng Transl Med. 2023 Jun 21;8(5):e10551. doi: 10.1002/btm2.10551. eCollection 2023 Sep.
3
Scalable Additive Construction of Arrayed Microstructures with Encoded Properties for Bioimaging.
Micromachines (Basel). 2022 Aug 25;13(9):1392. doi: 10.3390/mi13091392.
4
Microraft arrays for serial-killer CD19 chimeric antigen receptor T cells and single cell isolation.
Cytometry A. 2023 Mar;103(3):208-220. doi: 10.1002/cyto.a.24678. Epub 2022 Aug 8.
5
Methods and platforms for analysis of nucleic acids from single-cell based on microfluidics.
Microfluid Nanofluidics. 2021;25(11):87. doi: 10.1007/s10404-021-02485-0. Epub 2021 Sep 22.
6
A technology of a different sort: microraft arrays.
Lab Chip. 2021 Sep 7;21(17):3204-3218. doi: 10.1039/d1lc00506e. Epub 2021 Aug 4.
7
Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors.
Nat Methods. 2020 Jun;17(6):636-642. doi: 10.1038/s41592-020-0826-8. Epub 2020 May 11.
8
Automated platform for cell selection and separation based on four-dimensional motility and matrix degradation.
Analyst. 2020 Apr 7;145(7):2731-2742. doi: 10.1039/c9an02224d. Epub 2020 Feb 21.
9
Assay and Isolation of Single Proliferating CD4+ Lymphocytes Using an Automated Microraft Array Platform.
IEEE Trans Biomed Eng. 2020 Aug;67(8):2166-2175. doi: 10.1109/TBME.2019.2956081. Epub 2019 Nov 26.
10
Characterization of Tensioned PDMS Membranes for Imaging Cytometry on Microraft Arrays.
Anal Chem. 2018 Apr 3;90(7):4792-4800. doi: 10.1021/acs.analchem.8b00176. Epub 2018 Mar 13.

本文引用的文献

1
A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis.
Nat Cell Biol. 2015 Mar;17(3):340-9. doi: 10.1038/ncb3104. Epub 2015 Feb 9.
2
High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system.
N Biotechnol. 2014 May 25;31(3):214-20. doi: 10.1016/j.nbt.2014.02.002. Epub 2014 Feb 8.
3
Detection and isolation of auto-reactive human antibodies from primary B cells.
Methods. 2013 Dec 1;64(2):153-9. doi: 10.1016/j.ymeth.2013.06.018. Epub 2013 Jun 26.
4
An automated system for high-throughput single cell-based breeding.
Sci Rep. 2013;3:1191. doi: 10.1038/srep01191. Epub 2013 Feb 1.
6
Cell separation based on size and deformability using microfluidic funnel ratchets.
Lab Chip. 2012 Jul 7;12(13):2369-76. doi: 10.1039/c2lc21045b. Epub 2012 Apr 19.
7
Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3885-90. doi: 10.1073/pnas.1111205109. Epub 2012 Feb 21.
8
Isolation and manipulation of living adherent cells by micromolded magnetic rafts.
Biomicrofluidics. 2011 Sep;5(3):32002-3200212. doi: 10.1063/1.3608133. Epub 2011 Sep 20.
9
Microchip-based immunomagnetic detection of circulating tumor cells.
Lab Chip. 2011 Oct 21;11(20):3449-57. doi: 10.1039/c1lc20270g. Epub 2011 Aug 24.
10
Automated cellular sample preparation using a Centrifuge-on-a-Chip.
Lab Chip. 2011 Sep 7;11(17):2827-34. doi: 10.1039/c1lc20330d. Epub 2011 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验