Suppr超能文献

基于相变材料的温度敏感药物释放系统。

A temperature-sensitive drug release system based on phase-change materials.

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.

出版信息

Angew Chem Int Ed Engl. 2010 Oct 18;49(43):7904-8. doi: 10.1002/anie.201004057.

Abstract

Phase-change materials (PCMs), including 1-tetradecanol with a melting point at 38–39 °C and dodecanoic acid with a melting point at 43–46 °C were exploited as thermosensitive materials to demonstrate a new temperature-regulated drug release system. In this approach, colloidal particles containing FITC-dextran were embedded in the PCM matrix and processed as spheres or rods. When temperature was below the melting point of the PCM, there was no release of FITC-dextran due to the hydrophobic nature of the PCM. As the temperature was increased beyond the melting point, the PCM began to melt, the encapsulated particles leached out, and eventually FITC-dextran was released from the colloidal particles. By using colloidal particles made of gelatin, chitosan, and poly(lactic-co-glycolic acid) that have different solubility in water, we could manipulate the release pattern of FITC-dextran. We also demonstrated a dual temperature-regulated drug release system by incorporating two different PCMs into the same device. As an attractive feature, we could easily alter the initiation temperature and release pattern of drugs by judiciously selecting different combinations of PCMs and materials for the colloidal particles.

摘要

相变材料(PCM),包括熔点在 38-39°C 的十四醇和熔点在 43-46°C 的十二酸,被用作热敏材料,以展示新的温度调节药物释放系统。在这种方法中,含有 FITC-葡聚糖的胶体颗粒被嵌入 PCM 基质中,并加工成球体或棒体。当温度低于 PCM 的熔点时,由于 PCM 的疏水性,没有 FITC-葡聚糖的释放。随着温度升高超过 PCM 的熔点,PCM 开始熔化,包封的颗粒渗出,最终 FITC-葡聚糖从胶体颗粒中释放出来。通过使用在水中具有不同溶解度的明胶、壳聚糖和聚(乳酸-共-乙醇酸)制成的胶体颗粒,我们可以控制 FITC-葡聚糖的释放模式。我们还通过将两种不同的 PCM 纳入同一装置来展示双温度调节药物释放系统。作为一个吸引人的特点,我们可以通过明智地选择不同的 PCM 组合和胶体颗粒材料来轻松改变药物的起始温度和释放模式。

相似文献

1
A temperature-sensitive drug release system based on phase-change materials.
Angew Chem Int Ed Engl. 2010 Oct 18;49(43):7904-8. doi: 10.1002/anie.201004057.
2
Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules.
J Biomed Opt. 2016 Aug 1;21(8):85003. doi: 10.1117/1.JBO.21.8.085003.
4
Controlled release from coated polymer microparticles embedded in tissue-engineered scaffolds.
J Drug Target. 2001;9(6):431-8. doi: 10.3109/10611860108998777.
6
Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles.
J Biomed Nanotechnol. 2011 Feb;7(1):118-20. doi: 10.1166/jbn.2011.1230.
9
Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.
Int J Pharm. 2007 Apr 4;334(1-2):137-48. doi: 10.1016/j.ijpharm.2006.10.036. Epub 2006 Oct 28.
10
Physicochemical characterization of photopolymerizable PLGA blends.
Adv Exp Med Biol. 2006;585:183-96. doi: 10.1007/978-0-387-34133-0_13.

引用本文的文献

1
Azobenzene-Modified Temperature-Responsive Short Elastin-like Peptides for Photo-Controlled Phase Transition.
ACS Synth Biol. 2025 Aug 15;14(8):2999-3012. doi: 10.1021/acssynbio.4c00889. Epub 2025 Jul 24.
3
Biosensors integrated within wearable devices for monitoring chronic wound status.
APL Bioeng. 2025 Feb 4;9(1):010901. doi: 10.1063/5.0220516. eCollection 2025 Mar.
5
Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery.
Materials (Basel). 2023 Nov 7;16(22):7062. doi: 10.3390/ma16227062.
6
Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry.
Chem Sci. 2022 Nov 7;13(46):13708-13719. doi: 10.1039/d2sc05196f. eCollection 2022 Nov 30.
9
Smart 3D Printed Hydrogel Skin Wound Bandages: A Review.
Polymers (Basel). 2022 Mar 3;14(5):1012. doi: 10.3390/polym14051012.
10
Current Photoactive Molecules for Targeted Therapy of Triple-Negative Breast Cancer.
Molecules. 2021 Dec 17;26(24):7654. doi: 10.3390/molecules26247654.

本文引用的文献

1
A magnetically triggered composite membrane for on-demand drug delivery.
Nano Lett. 2009 Oct;9(10):3651-7. doi: 10.1021/nl9018935.
3
Stimuli-responsive hydrogels: drugs take control.
Nat Mater. 2008 Oct;7(10):767-8. doi: 10.1038/nmat2281.
4
Drug-sensing hydrogels for the inducible release of biopharmaceuticals.
Nat Mater. 2008 Oct;7(10):800-4. doi: 10.1038/nmat2250. Epub 2008 Aug 10.
5
Effect of chitosan on the release of protein from thermosensitive poly(organophosphazene) hydrogels.
Int J Pharm. 2008 Feb 12;349(1-2):188-95. doi: 10.1016/j.ijpharm.2007.08.010. Epub 2007 Aug 19.
6
PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.
J Control Release. 2005 Apr 18;103(3):609-24. doi: 10.1016/j.jconrel.2004.12.019.
7
Evaluating proteins release from, and their interactions with, thermosensitive poly (N-isopropylacrylamide) hydrogels.
J Control Release. 2005 Feb 2;102(2):361-72. doi: 10.1016/j.jconrel.2004.10.008.
8
Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers.
Biomaterials. 2005 Feb;26(4):349-57. doi: 10.1016/j.biomaterials.2004.02.041.
9
Pulsatile drug release control using hydrogels.
Adv Drug Deliv Rev. 2002 Jan 17;54(1):53-77. doi: 10.1016/s0169-409x(01)00243-5.
10
Environment-sensitive hydrogels for drug delivery.
Adv Drug Deliv Rev. 2001 Dec 31;53(3):321-39. doi: 10.1016/s0169-409x(01)00203-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验