Zhang Shihua, Ning Xue-Mei, Ding Chris, Zhang Xiang-Sun
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
BMC Syst Biol. 2010 Sep 13;4 Suppl 2(Suppl 2):S10. doi: 10.1186/1752-0509-4-S2-S10.
With ever increasing amount of available data on biological networks, modeling and understanding the structure of these large networks is an important problem with profound biological implications. Cellular functions and biochemical events are coordinately carried out by groups of proteins interacting each other in biological modules. Identifying of such modules in protein interaction networks is very important for understanding the structure and function of these fundamental cellular networks. Therefore, developing an effective computational method to uncover biological modules should be highly challenging and indispensable.
The purpose of this study is to introduce a new quantitative measure modularity density into the field of biomolecular networks and develop new algorithms for detecting functional modules in protein-protein interaction (PPI) networks. Specifically, we adopt the simulated annealing (SA) to maximize the modularity density and evaluate its efficiency on simulated networks. In order to address the computational complexity of SA procedure, we devise a spectral method for optimizing the index and apply it to a yeast PPI network.
Our analysis of detected modules by the present method suggests that most of these modules have well biological significance in context of protein complexes. Comparison with the MCL and the modularity based methods shows the efficiency of our method.
随着生物网络可用数据量的不断增加,对这些大型网络的结构进行建模和理解是一个具有深远生物学意义的重要问题。细胞功能和生化事件是由生物模块中相互作用的蛋白质组协同执行的。在蛋白质相互作用网络中识别此类模块对于理解这些基本细胞网络的结构和功能非常重要。因此,开发一种有效的计算方法来揭示生物模块应该极具挑战性且必不可少。
本研究的目的是将一种新的定量度量——模块密度引入生物分子网络领域,并开发用于检测蛋白质-蛋白质相互作用(PPI)网络中功能模块的新算法。具体而言,我们采用模拟退火(SA)来最大化模块密度,并在模拟网络上评估其效率。为了解决SA过程的计算复杂性,我们设计了一种用于优化该指标的谱方法,并将其应用于酵母PPI网络。
我们用本方法对检测到的模块进行的分析表明,这些模块中的大多数在蛋白质复合物的背景下具有良好的生物学意义。与基于MCL和模块度的方法的比较显示了我们方法的效率。