Suppr超能文献

miRGTF-net:整合 miRNA-基因-TF 网络分析揭示乳腺癌复发的关键驱动因素。

miRGTF-net: Integrative miRNA-gene-TF network analysis reveals key drivers of breast cancer recurrence.

机构信息

Faculty of Biology and Biotechnology, HSE University, Moscow, Russia.

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia.

出版信息

PLoS One. 2021 Apr 14;16(4):e0249424. doi: 10.1371/journal.pone.0249424. eCollection 2021.

Abstract

Analysis of regulatory networks is a powerful framework for identification and quantification of intracellular interactions. We introduce miRGTF-net, a novel tool for construction of miRNA-gene-TF networks. We consider multiple transcriptional and post-transcriptional interaction types, including regulation of gene and miRNA expression by transcription factors, gene silencing by miRNAs, and co-expression of host genes with their intronic miRNAs. The underlying algorithm uses information on experimentally validated interactions as well as integrative miRNA/mRNA expression profiles in a given set of samples. The latter ensures simultaneous tissue-specificity and biological validity of interactions. We applied miRGTF-net to paired miRNA/mRNA-sequencing data of breast cancer samples from The Cancer Genome Atlas (TCGA). Together with topological analysis of the constructed network we showed that considered players can form reliable prognostic gene signatures for ER-positive breast cancer. A number of signatures demonstrated remarkably high accuracy on transcriptomic data obtained by both microarrays and RNA sequencing from several independent patient cohorts. Furthermore, an essential part of prognostic genes were identified as direct targets of transcription factor E2F1. The putative interplay between estrogen receptor alpha and E2F1 was suggested as a potential recurrence factor in patients treated with tamoxifen. Source codes of miRGTF-net are available at GitHub (https://github.com/s-a-nersisyan/miRGTF-net).

摘要

调控网络分析是鉴定和量化细胞内相互作用的有力框架。我们引入了 miRGTF-net,这是一种构建 miRNA-基因-TF 网络的新工具。我们考虑了多种转录和转录后相互作用类型,包括转录因子对基因和 miRNA 表达的调节、miRNA 对基因的沉默以及宿主基因与其内含子 miRNA 的共表达。基础算法使用实验验证的相互作用信息以及给定样本集的整合 miRNA/mRNA 表达谱。后者确保了相互作用的组织特异性和生物学有效性。我们将 miRGTF-net 应用于来自癌症基因组图谱 (TCGA) 的乳腺癌样本的配对 miRNA/mRNA 测序数据。通过构建网络的拓扑分析,我们表明所考虑的参与者可以为 ER 阳性乳腺癌形成可靠的预后基因特征。许多特征在从几个独立患者队列获得的微阵列和 RNA 测序的转录组数据上表现出非常高的准确性。此外,预后基因的一个重要部分被鉴定为转录因子 E2F1 的直接靶标。雌激素受体 alpha 和 E2F1 之间的潜在相互作用被认为是接受他莫昔芬治疗的患者复发的潜在因素。miRGTF-net 的源代码可在 GitHub 上获得 (https://github.com/s-a-nersisyan/miRGTF-net)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcf5/8046230/76860e271b7a/pone.0249424.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验