Suppr超能文献

组氨酸残基在 Na+-依赖性抗坏血酸转运体-2(SVCT2)中是调节 SVCT2 功能的核心,调节 pH 敏感性、转运体动力学、Na+协同性、构象稳定性和亚细胞定位。

Histidine residues in the Na+-coupled ascorbic acid transporter-2 (SVCT2) are central regulators of SVCT2 function, modulating pH sensitivity, transporter kinetics, Na+ cooperativity, conformational stability, and subcellular localization.

机构信息

Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario, Casilla 160C, Concepción, Chile.

出版信息

J Biol Chem. 2010 Nov 19;285(47):36471-85. doi: 10.1074/jbc.M110.155630. Epub 2010 Sep 14.

Abstract

Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function.

摘要

钠离子依赖型抗坏血酸转运蛋白 2(SVCT2)的活性在酸性 pH 值下受到抑制,但对于定义转运体 pH 敏感性的分子决定因素知之甚少。SVCT2 的一级序列中含有六个组氨酸残基,其中三个位于转运体二级结构模型的外表面。我们使用定点突变和二乙基焦碳酸酯处理来鉴定负责 SVCT2 pH 敏感性的组氨酸残基。我们的结论是,五个组氨酸残基,即 His(109)、His(203)、His(206)、His(269)和 His(413),是 SVCT2 功能的核心调节剂,它们以不同的程度参与调节 pH 敏感性、转运体动力学、Na+协同作用、构象稳定性和亚细胞定位。我们的结果与以下模型一致:(i)单个外表面组氨酸残基 His(413)位于连接跨膜螺旋 VII-VIII 的外表面环 IV 中,通过一种显著减弱 Na+激活和 Na+协同作用的机制来定义 SVCT2 的 pH 敏感性,从而导致 Vmax 降低而不改变转运体 K(m);(ii)外表面组氨酸残基 His(203)、His(206)和 His(413)可能参与维持外表面环 II 和 IV 之间的功能相互作用,并影响转运体的一般折叠;(iii)组氨酸残基 203、206、269 和 413 通过调节表观转运体 K(m)来影响转运体动力学;(iv)位于跨膜螺旋 I 中心的组氨酸 109 可能对 SVCT2 与被转运底物抗坏血酸的相互作用至关重要。因此,组氨酸残基是 SVCT2 功能的核心调节剂。

相似文献

4
Functional role of conserved transmembrane segment 1 residues in human sodium-dependent vitamin C transporters.
Biochemistry. 2008 Mar 4;47(9):2952-60. doi: 10.1021/bi701666q. Epub 2008 Feb 5.
5
Transport model of the human Na+-coupled L-ascorbic acid (vitamin C) transporter SVCT1.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C451-9. doi: 10.1152/ajpcell.00439.2007. Epub 2007 Dec 19.
6
Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells.
J Biol Chem. 2003 Mar 14;278(11):9035-41. doi: 10.1074/jbc.M205119200. Epub 2002 Oct 14.
7
Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells.
Glia. 2005 Apr 1;50(1):32-47. doi: 10.1002/glia.20133.
8
Vitamin C transport systems of mammalian cells.
Mol Membr Biol. 2001 Jan-Mar;18(1):87-95. doi: 10.1080/09687680110033774.
9
Sodium-dependent vitamin C transporter isoforms in skin: Distribution, kinetics, and effect of UVB-induced oxidative stress.
Free Radic Biol Med. 2007 Sep 1;43(5):752-62. doi: 10.1016/j.freeradbiomed.2007.05.001. Epub 2007 May 10.
10
Sodium-dependent ascorbic acid transporter family SLC23.
Pflugers Arch. 2004 Feb;447(5):677-82. doi: 10.1007/s00424-003-1104-1. Epub 2003 Jul 4.

引用本文的文献

本文引用的文献

2
Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity.
J Gen Physiol. 2009 Dec;134(6):471-88. doi: 10.1085/jgp.200910254. Epub 2009 Nov 16.
3
Glycosylation regulates pannexin intermixing and cellular localization.
Mol Biol Cell. 2009 Oct;20(20):4313-23. doi: 10.1091/mbc.e09-01-0067. Epub 2009 Aug 19.
5
The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis.
J Am Soc Nephrol. 2009 Aug;20(8):1705-13. doi: 10.1681/ASN.2008111195. Epub 2009 May 21.
6
The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths.
J Biol Chem. 2009 Jul 24;284(30):20299-310. doi: 10.1074/jbc.M109.006478. Epub 2009 May 19.
7
A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.
J Neurochem. 2009 Jul;110(2):423-40. doi: 10.1111/j.1471-4159.2009.06151.x. Epub 2009 May 5.
9
Vitamin C transporters.
J Physiol Biochem. 2008 Dec;64(4):357-75. doi: 10.1007/BF03174092.
10
Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects.
Free Radic Biol Med. 2009 Jul 1;47(1):32-40. doi: 10.1016/j.freeradbiomed.2009.02.016. Epub 2009 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验