Suppr超能文献

使用绿色荧光蛋白对单层培养细胞中的氧梯度进行成像。

Imaging of oxygen gradients in monolayer cultured cells using green fluorescent protein.

机构信息

Biomedical Engineering Course, Advanced Technology Fusion, Graduate School of Science and Engineering, Saga Univ., Saga 840-8502, Japan.

出版信息

Am J Physiol Cell Physiol. 2010 Dec;299(6):C1318-23. doi: 10.1152/ajpcell.00254.2010. Epub 2010 Sep 15.

Abstract

Gradients of Po(2) between capillary blood and mitochondria are the driving force for diffusional O(2) delivery in tissues. Hypoxic microenvironments in tissues that result from diffusional O(2) gradients are especially relevant in solid tumors because they have been related to a poor prognosis. To address the impact of tissue O(2) gradients, we developed a novel technique that permits imaging of intracellular O(2) levels in cultured cells at a subcellular spatial resolution. This was done, with the sensitivity to O(2) ≤3%, by the O(2)-dependent red shift of green fluorescent protein (AcGFP1) fluorescence. Measurements were carried out in a confluent monolayer of Hep3B cells expressing AcGFP1 in the cytoplasm. To establish a two-dimensional O(2) diffusion model, a thin quartz glass slip was placed onto the monolayer cells to prevent O(2) diffusion from the top surface of the cell layer. The magnitude of the red shift progressively increased as the distance from the gas coverslip interface increased. It reached an anoxic level in cells located at ∼220 μm and ∼690 μm from the gas coverslip boundary at 1% and 3% gas phase O(2), respectively. Thus the average O(2) gradient was 0.03 mmHg/μm in the present tissue model. Abolition of mitochondrial respiration significantly dampened the gradients. Furthermore, intracellular gradients of the red shift in mitochondria-targeted AcGFP1 in single Hep3B cells suggest that the origin of tissue O(2) gradients is intracellular. Findings in the present two-dimensional O(2) diffusion model support the crucial role of tissue O(2) diffusion in defining the O(2) microenvironment in individual cells.

摘要

毛细血管血液与线粒体之间的 Po(2)梯度是组织内弥散 O(2)输送的驱动力。组织中由于弥散 O(2)梯度导致的缺氧微环境在实体瘤中尤其相关,因为它们与预后不良有关。为了解决组织 O(2)梯度的影响,我们开发了一种新的技术,允许以亚细胞空间分辨率在培养细胞中成像细胞内 O(2)水平。这是通过绿色荧光蛋白 (AcGFP1) 荧光对 O(2)的依赖性红移来实现的,其 O(2) 灵敏度≤3%。测量是在细胞质中表达 AcGFP1 的 Hep3B 细胞的致密单层中进行的。为了建立二维 O(2)扩散模型,将薄的石英玻璃片放置在单层细胞上,以防止 O(2)从细胞层的顶面扩散。随着与气体盖玻片界面的距离增加,红移的幅度逐渐增加。在 1%和 3%气相 O(2)下,距离气体盖玻片边界分别为 220 μm 和 690 μm 的细胞中,其达到缺氧水平。因此,在目前的组织模型中,平均 O(2)梯度为 0.03 mmHg/μm。线粒体呼吸的消除显著减弱了梯度。此外,单个 Hep3B 细胞中线粒体靶向 AcGFP1 的红移的细胞内梯度表明,组织 O(2)梯度的起源是细胞内的。本二维 O(2)扩散模型中的发现支持组织 O(2)扩散在定义单个细胞的 O(2)微环境中的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验