Institut de Minéralogie et de Physique des Milieux Condensés, Institut de Physique du Globe de Paris, Université Pierre et Marie Curie, UMR CNRS 7590, Université Paris Diderot, 140 rue de Lourmel, 75015 Paris, France.
Science. 2010 Sep 17;329(5998):1516-8. doi: 10.1126/science.1192448.
Interrogating physical processes that occur within the lowermost mantle is a key to understanding Earth's evolution and present-day inner composition. Among such processes, partial melting has been proposed to explain mantle regions with ultralow seismic velocities near the core-mantle boundary, but experimental validation at the appropriate temperature and pressure regimes remains challenging. Using laser-heated diamond anvil cells, we constructed the solidus curve of a natural fertile peridotite between 36 and 140 gigapascals. Melting at core-mantle boundary pressures occurs at 4180 ± 150 kelvin, which is a value that matches estimated mantle geotherms. Molten regions may therefore exist at the base of the present-day mantle. Melting phase relations and element partitioning data also show that these liquids could host many incompatible elements at the base of the mantle.
深入研究下地幔中发生的物理过程是了解地球演化和现今内部组成的关键。在这些过程中,部分熔融被认为是解释地幔中核心-地幔边界附近超低速区的原因,但在适当的温度和压力条件下进行实验验证仍然具有挑战性。我们使用激光加热钻石压砧,在 36 到 140 吉帕斯卡之间构建了天然富橄榄岩的固相线。在核心-地幔边界压力下的熔融发生在 4180 ± 150 开尔文,这与估计的地幔地热梯度相匹配。因此,现今地幔的底部可能存在熔融区。熔融相关系和元素分配数据还表明,这些液体在地幔底部可以容纳许多不相容元素。