Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
J Am Soc Mass Spectrom. 2010 Dec;21(12):1969-78. doi: 10.1016/j.jasms.2010.08.008. Epub 2010 Aug 21.
Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools. However, its potential to provide an independent, complementary analysis of clinical tissues has been limited by the very large file sizes and large number of discrete variables associated with imaging MS experiments. Here we demonstrate data reduction tools, based on automated feature identification and extraction, for peptide, protein, and lipid imaging MS, using multiple imaging MS technologies, that reduce data loads and the number of variables by >100×, and that highlight highly-localized features that can be missed using standard data analysis strategies. It is then demonstrated how these capabilities enable multivariate analysis on large imaging MS datasets spanning multiple tissues.
现在,成像 MS 技术能够同时分析数百种生物分子,涵盖多个分子类别,从而可以根据分子含量和分布来描述组织。当与高级数据分析程序结合使用时,仅基于分子含量就可以对组织进行分析和分类。这种分子组织学技术已被用于区分具有不同分子特征的区域,而这些区域是使用传统的组织学工具无法区分的。然而,由于成像 MS 实验相关的文件大小非常大,且离散变量数量众多,其对临床组织进行独立、补充分析的潜力受到了限制。在这里,我们展示了基于自动特征识别和提取的肽、蛋白质和脂质成像 MS 的数据分析缩减工具,这些工具使用了多种成像 MS 技术,将数据量和变量数减少了 100 倍以上,并突出了使用标准数据分析策略可能会错过的高度局部化特征。然后,我们展示了这些功能如何使对涵盖多种组织的大型成像 MS 数据集进行多元分析成为可能。