Suppr超能文献

KvAP 分离电压传感器结构域的溶液结构和磷脂相互作用

Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP.

机构信息

Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.

出版信息

J Mol Biol. 2010 Nov 5;403(4):591-606. doi: 10.1016/j.jmb.2010.09.012. Epub 2010 Sep 21.

Abstract

Voltage-sensor domains (VSDs) are specialized transmembrane segments that confer voltage sensitivity to many proteins such as ion channels and enzymes. The activities of these domains are highly dependent on both the chemical properties and the physical properties of the surrounding membrane environment. To learn about VSD-lipid interactions, we used nuclear magnetic resonance spectroscopy to determine the structure and phospholipid interface of the VSD from the voltage-dependent K(+) channel KvAP (prokaryotic Kv from Aeropyrum pernix). The solution structure of the KvAP VSD solubilized within phospholipid micelles is similar to a previously determined crystal structure solubilized by a nonionic detergent and complexed with an antibody fragment. The differences observed include a previously unidentified short amphipathic α-helix that precedes the first transmembrane helix and a subtle rigid-body repositioning of the S3-S4 voltage-sensor paddle. Using (15)N relaxation experiments, we show that much of the VSD, including the pronounced kink in S3 and the S3-S4 paddle, is relatively rigid on the picosecond-to-nanosecond timescale. In contrast, the kink in S3 is mobile on the microsecond-to-millisecond timescale and may act as a hinge in the movement of the paddle during channel gating. We characterized the VSD-phospholipid micelle interactions using nuclear Overhauser effect spectroscopy and showed that the micelle uniformly coats the KvAP VSD and approximates the chemical environment of a phospholipid bilayer. Using paramagnetically labeled phospholipids, we show that bilayer-forming lipids interact with the S3 and S4 helices more strongly than with S1 and S2.

摘要

电压传感器结构域(VSDs)是一类特殊的跨膜结构域,它们使许多蛋白质(如离子通道和酶)具有电压敏感性。这些结构域的活性高度依赖于周围膜环境的化学性质和物理性质。为了研究 VSD-脂质相互作用,我们使用核磁共振波谱法来确定电压门控钾离子通道 KvAP(古菌 Aeropyrum pernix 的 Kv)的 VSD 的结构和磷脂界面。该 VSD 溶解在磷脂胶束中的溶液结构与之前用非离子去污剂溶解并与抗体片段复合的晶体结构相似。观察到的差异包括一个以前未被识别的短两性α螺旋,它位于第一个跨膜螺旋之前,以及 S3-S4 电压传感器桨叶的细微刚体重新定位。通过(15)N 弛豫实验,我们表明,包括 S3 中的明显扭曲和 S3-S4 桨叶在内的大部分 VSD 在皮秒到纳秒时间尺度上相对刚性。相比之下,S3 中的扭曲在微秒到毫秒时间尺度上是可移动的,并且可能在通道门控期间作为桨叶运动的铰链。我们使用核 Overhauser 效应光谱法来描述 VSD-磷脂胶束相互作用,并表明胶束均匀地覆盖 KvAP VSD,并近似于磷脂双层的化学环境。使用顺磁标记的磷脂,我们表明形成双层的脂质与 S3 和 S4 螺旋的相互作用比与 S1 和 S2 的相互作用更强。

相似文献

1
Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP.
J Mol Biol. 2010 Nov 5;403(4):591-606. doi: 10.1016/j.jmb.2010.09.012. Epub 2010 Sep 21.
5
Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach.
Biochim Biophys Acta Biomembr. 2021 May 1;1863(5):183568. doi: 10.1016/j.bbamem.2021.183568. Epub 2021 Jan 30.
6
The intrinsic flexibility of the Kv voltage sensor and its implications for channel gating.
Biophys J. 2006 Mar 1;90(5):1598-606. doi: 10.1529/biophysj.105.072199. Epub 2005 Dec 2.
8
Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.
Biophys J. 2012 Jun 6;102(11):L44-6. doi: 10.1016/j.bpj.2012.04.021. Epub 2012 Jun 5.
9
Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer.
Structure. 2008 Mar;16(3):398-409. doi: 10.1016/j.str.2007.12.015.
10
Inferred motions of the S3a helix during voltage-dependent K+ channel gating.
J Mol Biol. 2008 Sep 5;381(3):569-80. doi: 10.1016/j.jmb.2008.06.010. Epub 2008 Jun 10.

引用本文的文献

1
Cotranslational membrane insertion of the voltage-sensitive K channel KvAP.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2412492122. doi: 10.1073/pnas.2412492122. Epub 2025 Mar 31.
3
N-Terminus-Mediated Solution Structure of Dimerization Domain of PRC1.
Curr Issues Mol Biol. 2022 Apr 10;44(4):1626-1645. doi: 10.3390/cimb44040111.
4
The Voltage-Dependent Deactivation of the KvAP Channel Involves the Breakage of Its S4 Helix.
Front Mol Biosci. 2020 Jul 29;7:162. doi: 10.3389/fmolb.2020.00162. eCollection 2020.
8
Upgraded molecular models of the human KCNQ1 potassium channel.
PLoS One. 2019 Sep 13;14(9):e0220415. doi: 10.1371/journal.pone.0220415. eCollection 2019.
9
NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in LPPG Micelles.
Biophys J. 2019 Jul 23;117(2):388-398. doi: 10.1016/j.bpj.2019.06.020. Epub 2019 Jun 26.

本文引用的文献

3
Fast-time scale dynamics of outer membrane protein A by extended model-free analysis of NMR relaxation data.
Biochim Biophys Acta. 2010 Feb;1798(2):68-76. doi: 10.1016/j.bbamem.2009.07.022. Epub 2009 Aug 6.
4
A gating model for the archeal voltage-dependent K(+) channel KvAP in DPhPC and POPE:POPG decane lipid bilayers.
J Mol Biol. 2009 Jul 31;390(5):902-12. doi: 10.1016/j.jmb.2009.05.062. Epub 2009 May 27.
6
Functional reconstitution of purified human Hv1 H+ channels.
J Mol Biol. 2009 Apr 17;387(5):1055-60. doi: 10.1016/j.jmb.2009.02.034. Epub 2009 Feb 21.
7
Sensing voltage across lipid membranes.
Nature. 2008 Dec 18;456(7224):891-7. doi: 10.1038/nature07620.
8
Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19276-81. doi: 10.1073/pnas.0810187105. Epub 2008 Dec 2.
9
Inferred motions of the S3a helix during voltage-dependent K+ channel gating.
J Mol Biol. 2008 Sep 5;381(3):569-80. doi: 10.1016/j.jmb.2008.06.010. Epub 2008 Jun 10.
10
The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor.
Neuron. 2008 May 22;58(4):546-56. doi: 10.1016/j.neuron.2008.03.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验