Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
J Mol Biol. 2010 Nov 5;403(4):591-606. doi: 10.1016/j.jmb.2010.09.012. Epub 2010 Sep 21.
Voltage-sensor domains (VSDs) are specialized transmembrane segments that confer voltage sensitivity to many proteins such as ion channels and enzymes. The activities of these domains are highly dependent on both the chemical properties and the physical properties of the surrounding membrane environment. To learn about VSD-lipid interactions, we used nuclear magnetic resonance spectroscopy to determine the structure and phospholipid interface of the VSD from the voltage-dependent K(+) channel KvAP (prokaryotic Kv from Aeropyrum pernix). The solution structure of the KvAP VSD solubilized within phospholipid micelles is similar to a previously determined crystal structure solubilized by a nonionic detergent and complexed with an antibody fragment. The differences observed include a previously unidentified short amphipathic α-helix that precedes the first transmembrane helix and a subtle rigid-body repositioning of the S3-S4 voltage-sensor paddle. Using (15)N relaxation experiments, we show that much of the VSD, including the pronounced kink in S3 and the S3-S4 paddle, is relatively rigid on the picosecond-to-nanosecond timescale. In contrast, the kink in S3 is mobile on the microsecond-to-millisecond timescale and may act as a hinge in the movement of the paddle during channel gating. We characterized the VSD-phospholipid micelle interactions using nuclear Overhauser effect spectroscopy and showed that the micelle uniformly coats the KvAP VSD and approximates the chemical environment of a phospholipid bilayer. Using paramagnetically labeled phospholipids, we show that bilayer-forming lipids interact with the S3 and S4 helices more strongly than with S1 and S2.
电压传感器结构域(VSDs)是一类特殊的跨膜结构域,它们使许多蛋白质(如离子通道和酶)具有电压敏感性。这些结构域的活性高度依赖于周围膜环境的化学性质和物理性质。为了研究 VSD-脂质相互作用,我们使用核磁共振波谱法来确定电压门控钾离子通道 KvAP(古菌 Aeropyrum pernix 的 Kv)的 VSD 的结构和磷脂界面。该 VSD 溶解在磷脂胶束中的溶液结构与之前用非离子去污剂溶解并与抗体片段复合的晶体结构相似。观察到的差异包括一个以前未被识别的短两性α螺旋,它位于第一个跨膜螺旋之前,以及 S3-S4 电压传感器桨叶的细微刚体重新定位。通过(15)N 弛豫实验,我们表明,包括 S3 中的明显扭曲和 S3-S4 桨叶在内的大部分 VSD 在皮秒到纳秒时间尺度上相对刚性。相比之下,S3 中的扭曲在微秒到毫秒时间尺度上是可移动的,并且可能在通道门控期间作为桨叶运动的铰链。我们使用核 Overhauser 效应光谱法来描述 VSD-磷脂胶束相互作用,并表明胶束均匀地覆盖 KvAP VSD,并近似于磷脂双层的化学环境。使用顺磁标记的磷脂,我们表明形成双层的脂质与 S3 和 S4 螺旋的相互作用比与 S1 和 S2 的相互作用更强。