Graduate Program in Biophysics, Madison, Wisconsin; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
Department of Neuroscience, Madison, Wisconsin; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
Biophys J. 2019 Jul 23;117(2):388-398. doi: 10.1016/j.bpj.2019.06.020. Epub 2019 Jun 26.
The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 3 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.
电压感应域(VSD)是一个保守的结构模块,它调节电压依赖性离子通道的门控,以响应膜电位的变化。尽管现在已经有许多包含 VSD 的离子通道结构,但我们对与门控跃迁相关的结构动力学的理解仍然有限。为了以特定于位置的分辨率探测动力学,我们利用 NMR 光谱学来表征来源于 Shaker 钾通道的 VSD,该 VSD 位于 1-棕榈酰基-2-羟基-sn-甘油-3-磷酸-(1'-rac-甘油)(LPPG)胶束中。根据二级化学位移使用扭转角相似性(TALOS+)获得的位移预测的主链二面角表明,Shaker-VSD 与同源 Kv1.2/2.1 嵌合体具有许多结构特征,包括第四跨膜螺旋 C 端部分从α螺旋向 3 螺旋的转变。然而,Shaker-VSD 和 Kv1.2/2.1 嵌合体在 S2-S3 接头和 S3 跨膜区域之间存在明显差异,Shaker-VSD 中二级结构元件的组织似乎更类似于 KvAP-VSD。在 LPPG 胶束中和 1-棕榈酰基-2-油酰基-甘油-3-磷酸胆碱(POPC)双层中的 Kv1.2-VSD 的微秒长分子动力学模拟的比较表明,LPPG 胶束不会在分离的电压传感器中引起明显的结构扭曲。为了评估三级折叠的完整性,我们直接探测 BrMT 类似物 2-[2-({[3-(2-氨基-乙基)-6-溴-1H-吲哚-2-基]甲氧基}k7 甲基)-6-溴-1H-吲哚-3-基]乙-1-胺(BrET)的结合,BrET 是一种门控修饰毒素,并确定了假定的结合位点的位置。我们的结果表明,LPPG 胶束中的 Shaker-VSD 处于天然样折叠状态,并且可能为电压门控及其调节的动力学提供有价值的见解。