Institut für Integrative Biologie, ETH Zürich, Universitätsstr 16, 8092 Zürich, Switzerland.
J Theor Biol. 2010 Dec 7;267(3):396-404. doi: 10.1016/j.jtbi.2010.09.010. Epub 2010 Sep 18.
I consider the constant rate birth-death process with incomplete sampling. I calculate the density of a given tree with sampled extant and extinct individuals. This density is essential for analyzing datasets which are sampled through time. Such datasets are common in virus epidemiology as viruses in infected individuals are sampled through time. Further, such datasets appear in phylogenetics when extant and extinct species data is available. I show how the derived tree density can be used (i) as a tree prior in a Bayesian method to reconstruct the evolutionary past of the sequence data on a calender-timescale, (ii) to infer the birth- and death-rates for a reconstructed evolutionary tree, and (iii) for simulating trees with a given number of sampled extant and extinct individuals which is essential for testing evolutionary hypotheses for the considered datasets.
我考虑了具有不完全采样的恒定速率 birth-death 过程。我计算了具有采样存活和灭绝个体的给定树的密度。该密度对于分析通过时间采样的数据集非常重要。此类数据集在病毒流行病学中很常见,因为感染个体中的病毒会随时间被采样。此外,当存在现存和灭绝物种的数据时,此类数据集也会出现在系统发育学中。我展示了如何使用派生的树密度(i)作为贝叶斯方法中的树先验来重建序列数据在日历时间尺度上的进化历史,(ii)推断重建进化树的出生和死亡率,以及(iii)用于模拟具有给定数量采样存活和灭绝个体的树,这对于测试所考虑数据集的进化假设至关重要。