Suppr超能文献

不完全抽样下的birth-death 模型与基于抽样的合并的联系。

On incomplete sampling under birth-death models and connections to the sampling-based coalescent.

机构信息

Institut für Integrative Biologie, ETH Zürich, Universitätsstr. 16, 8092 Zürich, Switzerland.

出版信息

J Theor Biol. 2009 Nov 7;261(1):58-66. doi: 10.1016/j.jtbi.2009.07.018. Epub 2009 Jul 23.

Abstract

The constant rate birth-death process is used as a stochastic model for many biological systems, for example phylogenies or disease transmission. As the biological data are usually not fully available, it is crucial to understand the effect of incomplete sampling. In this paper, we analyze the constant rate birth-death process with incomplete sampling. We derive the density of the bifurcation events for trees on n leaves which evolved under this birth-death-sampling process. This density is used for calculating prior distributions in Bayesian inference programs and for efficiently simulating trees. We show that the birth-death-sampling process can be interpreted as a birth-death process with reduced rates and complete sampling. This shows that joint inference of birth rate, death rate and sampling probability is not possible. The birth-death-sampling process is compared to the sampling-based population genetics model, the coalescent. It is shown that despite many similarities between these two models, the distribution of bifurcation times remains different even in the case of very large population sizes. We illustrate these findings on an Hepatitis C virus dataset from Egypt. We show that the transmission times estimates are significantly different-the widely used Gamma statistic even changes its sign from negative to positive when switching from the coalescent to the birth-death process.

摘要

常定速率 Birth-Death 过程被用作许多生物系统的随机模型,例如系统发育或疾病传播。由于生物数据通常并不完全可用,因此了解不完全采样的影响至关重要。在本文中,我们分析了不完全采样下的常定速率 Birth-Death 过程。我们推导出了在这种 Birth-Death-采样过程下进化的具有 n 个叶子的树的分叉事件的密度。该密度用于计算贝叶斯推断程序中的先验分布和有效地模拟树。我们表明,Birth-Death-采样过程可以解释为具有降低速率和完整采样的 Birth-Death 过程。这表明出生率、死亡率和采样概率的联合推断是不可能的。Birth-Death-采样过程与基于抽样的群体遗传学模型,即合并,进行了比较。结果表明,尽管这两个模型有许多相似之处,但即使在种群数量非常大的情况下,分叉时间的分布仍然不同。我们在来自埃及的丙型肝炎病毒数据集上说明了这些发现。我们表明,传输时间的估计值存在显著差异——即使在从合并到 Birth-Death 过程的情况下,广泛使用的 Gamma 统计量甚至会从负变为正。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验