Institut für Integrative Biologie, ETH Zürich, Universitätsstr. 16, 8092 Zürich, Switzerland.
J Theor Biol. 2012 Mar 21;297:33-40. doi: 10.1016/j.jtbi.2011.11.019. Epub 2011 Dec 1.
The constant rate birth-death process is a popular null model for speciation and extinction. If one removes extinct and non-sampled lineages, this process induces 'reconstructed trees' which describe the relationship between extant lineages. We derive the probability density of the length of a randomly chosen pendant edge in a reconstructed tree. For the special case of a pure-birth process with complete sampling, we also provide the probability density of the length of an interior edge, of the length of an edge descending from the root, and of the diversity (which is the sum of all edge lengths). We show that the results depend on whether the reconstructed trees are conditioned on the number of leaves, the age, or both.
恒率 Birth-Death 过程是一个流行的物种形成和灭绝的零模型。如果去除灭绝的和未采样的谱系,这个过程会诱导出“重建的树”,它描述了现存谱系之间的关系。我们推导出了在重建的树中随机选择的悬垂边的长度的概率密度。对于具有完全采样的纯 Birth 过程的特殊情况,我们还提供了内部边的长度、从根下降的边的长度以及多样性(即所有边长度的总和)的概率密度。我们表明,结果取决于重建的树是条件化于叶子的数量、年龄还是两者都条件化。