Suppr超能文献

基于细胞 CRISPR(成簇的规律间隔的短回文重复序列)间隔基微阵列的环境样本中病毒检测。

Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples.

机构信息

Thermal Biology Institute, Montana State University, Bozeman, Montana 59717, USA.

出版信息

Appl Environ Microbiol. 2010 Nov;76(21):7251-8. doi: 10.1128/AEM.01109-10. Epub 2010 Sep 17.

Abstract

It is currently difficult to detect unknown viruses in any given environment. The recent discovery of CRISPR (clusters of regularly interspaced short palindromic repeats) loci within bacterial and archaeal cellular genomes may provide an alternative approach to detect new viruses. It has been shown that the spacer sequences between the direct repeat units of the CRISPR loci are often derived from viruses and likely function as guide sequences to protect the cell from viral infection. The spacer sequences within the CRISPR loci may therefore serve as a record of the viruses that have replicated within the cell. We have cataloged the CRISPR spacer sequences from cellular metagenomic data from high-temperature (>80°C), acidic (pH < 4) hot spring environments located in Yellowstone National Park (YNP). We designed a microarray platform utilizing these CRISPR spacer sequences as potential probes to detect viruses present in YNP hot spring environments. We show that this microarray approach can detect viral sequences directly from virus-enriched environmental samples, detecting new viruses which have not been previously characterized. We further demonstrated that this microarray approach can be used to examine temporal changes in viral populations within the environment. Our results demonstrate that CRISPR spacer sequence-based microarrays will be useful tools for detecting and monitoring viruses from diverse environmental samples.

摘要

目前,在任何给定的环境中都很难检测到未知病毒。最近在细菌和古菌细胞基因组中发现的 CRISPR(规律成簇间隔短回文重复序列)基因座可能提供了一种检测新病毒的替代方法。已经表明,CRISPR 基因座的直接重复单元之间的间隔序列通常来自病毒,并且可能作为指导序列发挥作用,以保护细胞免受病毒感染。因此,CRISPR 基因座内的间隔序列可以作为在细胞内复制的病毒的记录。我们从位于黄石国家公园(YNP)的高温(> 80°C)、酸性(pH < 4)温泉环境的细胞宏基因组数据中对 CRISPR 间隔序列进行了编目。我们设计了一个微阵列平台,利用这些 CRISPR 间隔序列作为潜在探针来检测 YNP 温泉环境中存在的病毒。我们表明,这种微阵列方法可以直接从富含病毒的环境样本中检测到病毒序列,从而检测到以前未表征的新病毒。我们进一步证明,这种微阵列方法可用于检查环境中病毒种群的时间变化。我们的结果表明,基于 CRISPR 间隔序列的微阵列将成为检测和监测来自各种环境样本中病毒的有用工具。

相似文献

3
Archaeal Viruses of the Sulfolobales: Isolation, Infection, and CRISPR Spacer Acquisition.
Methods Mol Biol. 2015;1311:223-32. doi: 10.1007/978-1-4939-2687-9_14.
5
Metagenomic analyses of novel viruses and plasmids from a cultured environmental sample of hyperthermophilic neutrophiles.
Environ Microbiol. 2010 Nov;12(11):2918-30. doi: 10.1111/j.1462-2920.2010.02266.x.
9
Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus.
Environ Microbiol. 2013 Nov;15(11):3065-76. doi: 10.1111/1462-2920.12146. Epub 2013 May 22.
10
Diversity of SIRV-like Viruses from a North American Population.
Viruses. 2022 Jun 30;14(7):1439. doi: 10.3390/v14071439.

引用本文的文献

1
Discovery and characterization of complete genomes of 38 head-tailed proviruses in four predominant phyla of archaea.
Microbiol Spectr. 2025 Jan 7;13(1):e0049224. doi: 10.1128/spectrum.00492-24. Epub 2024 Nov 15.
2
Using metagenomic data to boost protein structure prediction and discovery.
Comput Struct Biotechnol J. 2022 Jan 3;20:434-442. doi: 10.1016/j.csbj.2021.12.030. eCollection 2022.
3
Comprehensive discovery of CRISPR-targeted terminally redundant sequences in the human gut metagenome: Viruses, plasmids, and more.
PLoS Comput Biol. 2021 Oct 21;17(10):e1009428. doi: 10.1371/journal.pcbi.1009428. eCollection 2021 Oct.
4
CRISPR: A new paradigm of theranostics.
Nanomedicine. 2021 Apr;33:102350. doi: 10.1016/j.nano.2020.102350. Epub 2021 Jan 9.
5
Diversity and Distribution of a Novel Genus of Hyperthermophilic Viruses Encoding a Proof-Reading Family-A DNA Polymerase.
Front Microbiol. 2020 Nov 12;11:583361. doi: 10.3389/fmicb.2020.583361. eCollection 2020.
6
7
CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases.
Sens Actuators B Chem. 2018 Nov 10;273:316-321. doi: 10.1016/j.snb.2018.06.069. Epub 2018 Jun 15.
8
Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange.
Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20180092. doi: 10.1098/rstb.2018.0092.
9
Using CAPTURE to detect spacer acquisition in native CRISPR arrays.
Nat Protoc. 2019 Mar;14(3):976-990. doi: 10.1038/s41596-018-0123-5. Epub 2019 Feb 11.
10
Active Crossfire Between Cyanobacteria and Cyanophages in Phototrophic Mat Communities Within Hot Springs.
Front Microbiol. 2018 Sep 3;9:2039. doi: 10.3389/fmicb.2018.02039. eCollection 2018.

本文引用的文献

2
Viral and microbial community dynamics in four aquatic environments.
ISME J. 2010 Jun;4(6):739-51. doi: 10.1038/ismej.2010.1. Epub 2010 Feb 11.
3
The CRISPR system: small RNA-guided defense in bacteria and archaea.
Mol Cell. 2010 Jan 15;37(1):7-19. doi: 10.1016/j.molcel.2009.12.033.
4
CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea.
Nat Rev Genet. 2010 Mar;11(3):181-90. doi: 10.1038/nrg2749.
5
Evolutionary dynamics of clustered irregularly interspaced short palindromic repeat systems in the ocean metagenome.
Appl Environ Microbiol. 2010 Apr;76(7):2136-44. doi: 10.1128/AEM.01985-09. Epub 2010 Jan 29.
6
CRISPR/Cas, the immune system of bacteria and archaea.
Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555.
7
High diversity of the viral community from an Antarctic lake.
Science. 2009 Nov 6;326(5954):858-61. doi: 10.1126/science.1179287.
8
Metagenomic analysis of RNA viruses in a fresh water lake.
PLoS One. 2009 Sep 29;4(9):e7264. doi: 10.1371/journal.pone.0007264.
9
Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences.
Environ Microbiol. 2009 Nov;11(11):2884-92. doi: 10.1111/j.1462-2920.2009.02033.x. Epub 2009 Aug 24.
10
CRISPR-based adaptive and heritable immunity in prokaryotes.
Trends Biochem Sci. 2009 Aug;34(8):401-7. doi: 10.1016/j.tibs.2009.05.002. Epub 2009 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验