Suppr超能文献

染色质全景:转录之外的甲基化。

Chromatin landscape: methylation beyond transcription.

机构信息

Department of Medicine, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.

出版信息

Epigenetics. 2011 Jan;6(1):9-15. doi: 10.4161/epi.6.1.13331. Epub 2011 Jan 1.

Abstract

The nucleus is organized and compartmentalized into a highly ordered structure that contains DNA, RNA, chromosomal and histone proteins. The dynamics associated with these various components are responsible for making sure that the DNA is properly duplicated, genes are properly transcribed, and the genome is stabilized. It is no surprise that alterations in these various components are directly associated with pathologies like cancer. This Point of View focuses on the role the chromatin modification landscape, especially histone 3 lysine 9 methylation (H3K9me), and heterochromatin proteins (HP1) play in regulating DNA-templated processes, with a particular focus on their role at non-genic regions and effects on chromatin structure. These observations will be further extended to the role that alterations in chromatin landscape will contribute to diseases. This Point of View emphasizes that alterations in histone modification landscapes are not only relevant to transcription but have broad range implications in chromatin structure, nuclear architecture, cell cycle, genome stability and disease progression.

摘要

核是有组织的,被分隔成一个高度有序的结构,其中包含 DNA、RNA、染色体和组蛋白。与这些各种成分相关的动力学负责确保 DNA 正确复制、基因正确转录,以及基因组稳定。毫不奇怪,这些各种成分的改变与癌症等病理学直接相关。本观点集中讨论了染色质修饰图谱的作用,特别是组蛋白 3 赖氨酸 9 甲基化 (H3K9me) 和异染色质蛋白 (HP1) 在调节 DNA 模板过程中的作用,特别关注它们在非基因区域的作用及其对染色质结构的影响。这些观察结果将进一步扩展到染色质景观的改变将如何导致疾病的发生。本观点强调,组蛋白修饰图谱的改变不仅与转录有关,而且对染色质结构、核架构、细胞周期、基因组稳定性和疾病进展都有广泛的影响。

相似文献

1
Chromatin landscape: methylation beyond transcription.
Epigenetics. 2011 Jan;6(1):9-15. doi: 10.4161/epi.6.1.13331. Epub 2011 Jan 1.
2
Chromatin dynamics: interplay between remodeling enzymes and histone modifications.
Biochim Biophys Acta. 2014 Aug;1839(8):728-36. doi: 10.1016/j.bbagrm.2014.02.013. Epub 2014 Feb 28.
3
Histone lysine methylation and chromatin replication.
Biochim Biophys Acta. 2014 Dec;1839(12):1433-9. doi: 10.1016/j.bbagrm.2014.03.009. Epub 2014 Mar 28.
5
Dynamic regulation of effector protein binding to histone modifications: the biology of HP1 switching.
Cell Cycle. 2006 Dec;5(24):2842-51. doi: 10.4161/cc.5.24.3540. Epub 2006 Dec 15.
7
Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation.
Curr Opin Cell Biol. 2008 Jun;20(3):341-8. doi: 10.1016/j.ceb.2008.03.019. Epub 2008 May 26.
8
Structural Basis of Heterochromatin Formation by Human HP1.
Mol Cell. 2018 Feb 1;69(3):385-397.e8. doi: 10.1016/j.molcel.2017.12.011. Epub 2018 Jan 11.
9
Hitting the 'mark': interpreting lysine methylation in the context of active transcription.
Biochim Biophys Acta. 2014 Dec;1839(12):1353-61. doi: 10.1016/j.bbagrm.2014.03.002. Epub 2014 Mar 12.

引用本文的文献

1
Insights into targeted ferroptosis in mechanisms, biology, and role of Alzheimer's disease: an update.
Front Aging Neurosci. 2025 Jul 21;17:1587986. doi: 10.3389/fnagi.2025.1587986. eCollection 2025.
2
KDM3A and KDM3B regulate alternative splicing in mouse pluripotent stem cells.
iScience. 2025 May 8;28(6):112612. doi: 10.1016/j.isci.2025.112612. eCollection 2025 Jun 20.
4
Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in .
RNA Biol. 2024 Jan;21(1):1-10. doi: 10.1080/15476286.2024.2332856. Epub 2024 Mar 26.
5
Evidence of epigenetic landscape shifts in mucopolysaccharidosis IIIB and IVA.
Sci Rep. 2024 Feb 17;14(1):3961. doi: 10.1038/s41598-024-54626-4.
6
KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing.
bioRxiv. 2024 Jan 23:2023.05.31.543088. doi: 10.1101/2023.05.31.543088.
8
Epigenetic Alterations under Oxidative Stress in Stem Cells.
Oxid Med Cell Longev. 2022 Aug 29;2022:6439097. doi: 10.1155/2022/6439097. eCollection 2022.
10
Integrative epigenomic and transcriptomic analyses reveal metabolic switching by intermittent fasting in brain.
Geroscience. 2022 Aug;44(4):2171-2194. doi: 10.1007/s11357-022-00537-z. Epub 2022 Mar 31.

本文引用的文献

1
Epigenetic regulation of cancer growth by histone demethylases.
Int J Cancer. 2010 Nov 1;127(9):1991-8. doi: 10.1002/ijc.25538.
2
3
Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones.
Science. 2010 May 28;328(5982):1161-4. doi: 10.1126/science.1186777.
4
Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome.
Genome Res. 2010 Jun;20(6):771-80. doi: 10.1101/gr.101790.109. Epub 2010 Apr 30.
5
Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading.
Genome Res. 2010 Feb;20(2):201-11. doi: 10.1101/gr.097873.109. Epub 2009 Dec 7.
6
Sequencing newly replicated DNA reveals widespread plasticity in human replication timing.
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):139-44. doi: 10.1073/pnas.0912402107. Epub 2009 Dec 4.
8
Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science. 2009 Oct 9;326(5950):289-93. doi: 10.1126/science.1181369.
9
Temporal regulation of DNA replication in mammalian cells.
Crit Rev Biochem Mol Biol. 2009 Sep-Oct;44(5):343-51. doi: 10.1080/10409230903232618.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验