Swygert Sarah G, Peterson Craig L
Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Biochim Biophys Acta. 2014 Aug;1839(8):728-36. doi: 10.1016/j.bbagrm.2014.02.013. Epub 2014 Feb 28.
Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
染色质动力学在调节基因组DNA对于包括基因转录和DNA修复在内的多种核过程的可及性方面发挥着至关重要的作用。核心组蛋白的翻译后修饰以及ATP依赖的染色质重塑酶的作用代表了控制染色质动力学并将其与核事件相联系的两种主要机制。尽管存在一些例子表明,一种组蛋白修饰或一种重塑酶可能足以驱动染色质转变,但这些机制通常协同作用以整合调控输入,从而导致染色质结构和功能的协调改变。实际上,位点特异性组蛋白修饰可以促进染色质重塑酶募集到特定的基因组区域,或者它们可以调节染色质重塑反应的效率或结果。相反,染色质重塑酶也可以影响,有时直接调节组蛋白的修饰状态。这些功能相互作用通常很复杂,经常是短暂的,并且通常需要众多其他因子的参与。本文是名为:组蛋白修饰功能的分子机制的特刊的一部分。