Ichimura Taro, Kakizuka Taishi, Taniguchi Yoshitsugu, Ejima Satoshi, Sato Yuki, Itano Keiko, Seiriki Kaoru, Hashimoto Hitoshi, Sugawara Ko, Itoga Hiroya, Onami Shuichi, Nagai Takeharu
Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research, Initiatives, Osaka University, Osaka University, Osaka, Japan.
Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Osaka, Japan.
Elife. 2025 Feb 3;13:RP93633. doi: 10.7554/eLife.93633.
We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×10 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.
我们建立了一个具有超大视场(FOV)的容积跨尺度成像系统,该系统能够同时观察厘米级宽的三维(3D)组织和胚胎中数百万个细胞的动态变化。我们使用了一个定制的放大倍数为×2、数值孔径(NA)为0.25的巨型透镜系统,以及一个像素超过1亿的互补金属氧化物半导体(CMOS)相机,构建了一个跨尺度显微镜AMATERAS - 2,并在约1.5×1.0厘米的视场内实现了横向空间分辨率约为1.1微米的荧光成像。通过为我们的低功率成像系统量身定制的光学和计算切片技术相结合,实现了3D分辨能力。我们将该成像技术应用于1.2厘米宽的小鼠脑切片,成功地在单个视场内以亚细胞分辨率观察到了大脑的各个区域。我们还对鹌鹑胚胎发育过程中1厘米宽的血管网络进行了超过24小时的延时成像,可视化了超过4.0×10个血管内皮细胞的运动,并对其动态变化进行了定量分析。我们的结果证明了该技术在加速生成生物体和组织中所有细胞的综合参考图谱方面的潜力,这有助于理解发育过程、脑功能和疾病发病机制,以及用于移植医学的组织的高通量质量检查。