Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
Biopolymers. 2011 Feb;95(2):71-6. doi: 10.1002/bip.21538. Epub 2010 Sep 20.
Most types of ambers are naturally occurring, relatively hard, durable resinite polymers derived from the exudates of trees. This resource has been coveted for thousands of years due to its numerous useful properties in industrial processes, beauty, and purported medicinal properties. Labdane diterpenoid-based ambers represent the most abundant and important resinites on earth. These resinites are a dwindling nonrenewable natural resource, so a new source of such materials needs to be established. Recent advances in sequencing technologies and biochemical engineering are rapidly accelerating the rate of identifying and assigning function to genes involved in terpenoid biosynthesis, as well as producing industrial-scale quantities of desired small-molecules in bacteria and yeast. This has provided new tools for engineering metabolic pathways capable of producing diterpenoid monomers that will enable the production of custom-tailored resinite-like polymers. Furthermore, this biosynthetic toolbox is continuously expanding, providing new possibilities for renewing dwindling stocks of naturally occurring resinite materials and engineering new materials for future applications.
大多数类型的琥珀是天然存在的,相对坚硬、耐用的树脂聚合物,源自树木的渗出物。由于其在工业过程、美观和所谓的药用特性方面的众多有用性质,这种资源数千年来一直备受追捧。基于劳丹烷二萜的琥珀代表了地球上最丰富和最重要的树脂。这些树脂是一种日益减少的不可再生自然资源,因此需要建立新的此类材料来源。测序技术和生化工程的最新进展正在迅速加快鉴定和分配参与萜类生物合成的基因功能的速度,以及在细菌和酵母中生产所需小分子的工业规模数量。这为工程代谢途径提供了新的工具,这些途径能够生产出二萜单体,从而能够生产出定制的类树脂聚合物。此外,这个生物合成工具包还在不断扩展,为更新日益减少的天然存在的树脂材料库存和为未来应用工程新材料提供了新的可能性。