Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
Int J Hyperthermia. 2010;26(8):775-89. doi: 10.3109/02656736.2010.485593. Epub 2010 Sep 21.
Recent advances in nanotechnology have resulted in the manufacture of a plethora of nanoparticles of different sizes, shapes, core physicochemical properties and surface modifications that are being investigated for potential medical applications, particularly for the treatment of cancer. This review focuses on the therapeutic use of customised gold nanoparticles, magnetic nanoparticles and carbon nanotubes that efficiently generate heat upon electromagnetic (light and magnetic fields) stimulation after direct injection into tumours or preferential accumulation in tumours following systemic administration. This review will also focus on the evolving strategies to improve the therapeutic index of prostate cancer treatment using nanoparticle-mediated hyperthermia.
Nanoparticle-mediated thermal therapy is a new and minimally invasive tool in the armamentarium for the treatment of cancers. Unique challenges posed by this form of hyperthermia include the non-target biodistribution of nanoparticles in the reticuloendothelial system when administered systemically, the inability to visualise or quantify the global concentration and spatial distribution of these particles within tumours, the lack of standardised thermal modelling and dosimetry algorithms, and the concerns regarding their biocompatibility. Nevertheless, novel particle compositions, geometries, activation strategies, targeting techniques, payload delivery strategies, and radiation dose enhancement concepts are unique attributes of this form of hyperthermia that warrant further exploration. Capitalising on these opportunities and overcoming these challenges offers the possibility of seamless and logical translation of this nanoparticle-mediated hyperthermia paradigm from the bench to the bedside.
纳米技术的最新进展导致了大量不同尺寸、形状、核心物理化学性质和表面修饰的纳米粒子的制造,这些纳米粒子正在被研究用于潜在的医学应用,特别是癌症的治疗。本综述重点介绍了定制金纳米粒子、磁性纳米粒子和碳纳米管的治疗用途,这些纳米粒子在直接注射到肿瘤或全身给药后优先积聚在肿瘤中时,通过电磁(光和磁场)刺激能有效地产生热量。本综述还将重点介绍使用纳米颗粒介导的热疗来提高前列腺癌治疗疗效指数的不断发展的策略。
纳米颗粒介导的热疗是癌症治疗新的微创工具。这种形式的热疗带来的独特挑战包括全身给药时纳米颗粒在网状内皮系统中的非靶向生物分布、无法可视化或量化这些颗粒在肿瘤内的全局浓度和空间分布、缺乏标准化的热建模和剂量测定算法,以及对其生物相容性的担忧。然而,新型粒子组成、几何形状、激活策略、靶向技术、有效载荷传递策略和辐射剂量增强概念是这种热疗的独特属性,值得进一步探索。利用这些机会并克服这些挑战,有可能将这种基于纳米颗粒的热疗范式从实验室无缝、逻辑地转化到临床。