Department of Materials Science and Engineering, Beckman Institute, and Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17095-100. doi: 10.1073/pnas.1005828107. Epub 2010 Sep 21.
Reversible control of adhesion is an important feature of many desired, existing, and potential systems, including climbing robots, medical tapes, and stamps for transfer printing. We present experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries. Here, the strength of nonspecific adhesion can be switched by more than three orders of magnitude, from strong to weak, in a reversible fashion. Implementing these concepts in advanced stamps for transfer printing enables versatile modes for deterministic assembly of solid materials in micro/nanostructured forms. Demonstrations in printed two- and three-dimensional collections of silicon platelets and membranes illustrate some capabilities. An unusual type of transistor that incorporates a printed gate electrode, an air gap dielectric, and an aligned array of single walled carbon nanotubes provides a device example.
可逆的粘附控制是许多理想的、现有的和潜在的系统的一个重要特征,包括攀爬机器人、医用胶带和用于转印印花的印花邮票。我们展示了在优化的几何形状下,具有表面浮雕尖锐特征的平坦、刚性物体与弹性体表面之间的压力调制粘附的实验和理论研究。在这里,非特异性粘附的强度可以以可逆的方式切换三个以上数量级,从强到弱。在用于转印印花的先进印花邮票中实现这些概念,可以实现以微/纳米结构形式对固体材料进行确定性组装的多种模式。在印刷的二维和三维硅片和薄膜的集合体的演示中说明了一些能力。一种特殊类型的晶体管,它包含一个印刷的栅电极、一个空气间隙电介质和一个排列整齐的单壁碳纳米管阵列,提供了一个器件示例。