Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu, Korea.
Nanotechnology. 2010 Oct 22;21(42):425102. doi: 10.1088/0957-4484/21/42/425102. Epub 2010 Sep 22.
Metallic nanoparticles (MNP) are able to release localized x-rays when activated with a high energy proton beam by the particle-induced x-ray emission (PIXE) effect. The exploitation of this phenomenon in the therapeutic irradiation of tumors has been investigated. PIXE-based x-ray emission directed at CT26 tumor cells in vitro, when administered with either gold (average diameter 2 and 13 nm) or iron (average diameter 14 nm) nanoparticles (GNP or SNP), increased with MNP solution concentration over the range of 0.1-2 mg ml(-1). With irradiation by a 45 MeV proton therapy (PT) beam, higher concentrations had a decreased cell survival fraction. An in vivo study in CT26 mouse tumor models with tumor regression assay demonstrated significant tumor dose enhancement, thought to be a result of the PIXE effect when compared to conventional PT without MNP (radiation-only group) using a 45 MeV proton beam (p < 0.02). Those receiving GNP or SNP injection doses of 300 mg kg(-1) body weight before proton beam therapy demonstrated 90% or 75% tumor volume reduction (TVR) in 20 days post-PT while the radiation-only group showed only 18% TVR and re-growth of tumor volume after 20 days. Higher complete tumor regression (CTR) was observed in 14-24 days after a single treatment of PT with an average rate of 33-65% for those receiving MNP compared with 25% for the radiation-only group. A lower bound of therapeutic effective MNP concentration range, in vivo, was estimated as 30-79 µg g(-1) tissue for both gold and iron nanoparticles. The tumor dose enhancement may compensate for an increase in entrance dose associated with conventional PT when treating large, solid tumors with a spread-out Bragg peak (SOBP) technique. The use of a combined high energy Bragg peak PT with PIXE generated by MNP, or PIXE alone, may result in new treatment options for infiltrative metastatic tumors and other diffuse inflammatory diseases.
金属纳米颗粒(MNP)能够在高能质子束的作用下通过粒子诱导 X 射线发射(PIXE)效应释放局域 X 射线。已经研究了这种现象在肿瘤治疗照射中的应用。当将金(平均直径为 2 和 13nm)或铁(平均直径为 14nm)纳米颗粒(GNP 或 SNP)的 PIXE 基于 X 射线发射施用于体外 CT26 肿瘤细胞时,随着 MNP 溶液浓度在 0.1-2mg/ml 的范围内增加,细胞存活率降低。在用 45MeV 质子治疗(PT)束照射时,较高的浓度会降低细胞存活分数。在 CT26 小鼠肿瘤模型的体内研究中,通过肿瘤消退测定法证明了显著的肿瘤剂量增强,与不使用 MNP 的常规 PT(仅辐射组)相比,这被认为是 PIXE 效应的结果,而不使用 MNP(仅辐射组)使用 45MeV 质子束(p<0.02)。在质子束治疗前接受 300mg/kg 体重的 GNP 或 SNP 注射剂量的那些人在 PT 后 20 天显示出 90%或 75%的肿瘤体积减少(TVR),而仅辐射组仅显示出 18%的 TVR 和肿瘤体积在 20 天后的再生长。在单次 PT 治疗后 14-24 天观察到更高的完全肿瘤消退(CTR),接受 MNP 的人平均有 33-65%的 CTR,而仅辐射组的 CTR 为 25%。体内治疗有效 MNP 浓度范围的下限估计为 30-79μg/g 组织,用于金和铁纳米颗粒。当使用扩展布拉格峰(SOBP)技术治疗大型实体肿瘤时,肿瘤剂量增强可以补偿与常规 PT 相关的进入剂量的增加。使用高能布拉格峰 PT 与 MNP 产生的 PIXE 或单独的 PIXE 的联合使用可能为浸润性转移性肿瘤和其他弥漫性炎症性疾病提供新的治疗选择。