Suppr超能文献

钟形虫的收缩和伸展及其在流动载荷下的力学特性。

Contraction and extension of Vorticella and its mechanical characterization under flow loading.

出版信息

Biomicrofluidics. 2010 Aug 26;4(3):034109. doi: 10.1063/1.3481777.

Abstract

We have studied the contraction and extension of Vorticella convallaria and its mechanical properties with a microfluidic loading system. Cells of V. convallaria were injected to a microfluidic channel (500 μm in width and 100 μm in height) and loaded by flow up to ∼350 mm s(-1). The flow produced a drag force on the order of nanonewton on a typical vorticellid cell body. We gradually increased the loading force on the same V. convallaria specimen and examined its mechanical property and stalk motion of V. convallaria. With greater drag forces, the contraction distance linearly decreased; the contracted length was close to around 90% of the stretched length. We estimated the drag force on Vorticella in the channel by calculating the force on a sphere in a linear shear flow.

摘要

我们使用微流控加载系统研究了喇叭虫的收缩和伸展及其力学特性。将喇叭虫细胞注入微流控通道(宽 500 微米,高 100 微米),通过流速达到约 350 毫米/秒进行加载。流动对典型的喇叭虫虫体产生了纳牛顿量级的阻力。我们逐渐增加对同一喇叭虫标本的加载力,并检查其机械特性和喇叭虫柄的运动。随着阻力的增加,收缩距离呈线性减小;收缩长度接近伸展长度的 90%左右。我们通过计算线性剪切流中球体上的力来估计通道中喇叭虫的阻力。

相似文献

1
Contraction and extension of Vorticella and its mechanical characterization under flow loading.
Biomicrofluidics. 2010 Aug 26;4(3):034109. doi: 10.1063/1.3481777.
2
Maximal force characteristics of the Ca(2+)-powered actuator of Vorticella convallaria.
Biophys J. 2012 Sep 5;103(5):860-7. doi: 10.1016/j.bpj.2012.07.038.
3
Stalk-length-dependence of the contractility of Vorticella convallaria.
Phys Biol. 2017 Nov 16;14(6):066002. doi: 10.1088/1478-3975/aa89b8.
5
6
Flow and transport effect caused by the stalk contraction cycle of .
Biomicrofluidics. 2017 Jun 14;11(3):034119. doi: 10.1063/1.4985654. eCollection 2017 May.
7
Direct measurement of Vorticella contraction force by micropipette deflection.
FEBS Lett. 2017 Feb;591(4):581-589. doi: 10.1002/1873-3468.12577. Epub 2017 Feb 17.
8
Chemical control of Vorticella bioactuator using microfluidics.
Lab Chip. 2010 Jun 21;10(12):1574-8. doi: 10.1039/c003427d. Epub 2010 May 7.
9
Ca(2+)-induced tension development in the stalks of glycerinated Vorticella convallaria.
Cell Motil Cytoskeleton. 1996;34(4):271-8. doi: 10.1002/(SICI)1097-0169(1996)34:4<271::AID-CM2>3.0.CO;2-B.

引用本文的文献

1
Flow loading induces oscillatory trajectories in a bloodstream parasite.
Biophys J. 2012 Sep 19;103(6):1162-9. doi: 10.1016/j.bpj.2012.08.020.
2
Analysis of bacterial surface interactions using microfluidic systems.
Sci Prog. 2011;94(Pt 4):431-50. doi: 10.3184/003685011X13201828216868.

本文引用的文献

2
An optical counting technique with vertical hydrodynamic focusing for biological cells.
Biomicrofluidics. 2010 Jun 15;4(2):024110. doi: 10.1063/1.3380598.
4
Macro- and microscale fluid flow systems for endothelial cell biology.
Lab Chip. 2010 Jan 21;10(2):143-60. doi: 10.1039/b913390a. Epub 2009 Oct 9.
6
Microfluidics as a functional tool for cell mechanics.
Biomicrofluidics. 2009 Jan 5;3(1):12006. doi: 10.1063/1.3067820.
7
Microfluidic pump powered by self-organizing bacteria.
Small. 2008 Jan;4(1):111-8. doi: 10.1002/smll.200700641.
8
Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring.
Biophys J. 2008 Jan 1;94(1):265-72. doi: 10.1529/biophysj.107.108852. Epub 2007 Oct 12.
9
A microrotary motor powered by bacteria.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13618-23. doi: 10.1073/pnas.0604122103. Epub 2006 Sep 1.
10
An actuated pump on-chip powered by cultured cardiomyocytes.
Lab Chip. 2006 Mar;6(3):362-8. doi: 10.1039/b515149j. Epub 2006 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验