Department of Mechanical Engineering and Materials Science, and The Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, USA.
J Am Chem Soc. 2010 Oct 13;132(40):14126-9. doi: 10.1021/ja104544s.
Using first principles calculations, we show the high hydrogen storage capacity of metallacarboranes, where the transition metal (TM) atoms can bind up to 5 H(2)-molecules. The average binding energy of ∼0.3 eV/H favorably lies within the reversible adsorption range. Among the first row TM atoms, Sc and Ti are found to be the optimum in maximizing the H(2) storage (∼8 wt %) on the metallacarborane cluster. Being an integral part of the cage, TMs do not suffer from the aggregation problem, which has been the biggest hurdle for the success of TM-decorated graphitic materials for hydrogen storage. Furthermore, the presence of carbon atom in the cages permits linking the metallacarboranes to form metal organic frameworks, which are thus able to adsorb hydrogen via Kubas interaction, in addition to van der Waals physisorption.
利用第一性原理计算,我们展示了金属碳硼烷具有高储氢能力,其中过渡金属(TM)原子可以结合多达 5 个 H2 分子。平均结合能约为 0.3 eV/H,有利于处于可逆吸附范围内。在第一行 TM 原子中,Sc 和 Ti 被发现是最大限度地提高金属碳硼烷簇上 H2 存储(约 8wt%)的最佳选择。作为笼的一个组成部分,TM 原子不会遭受聚集问题的困扰,而聚集问题一直是 TM 修饰的石墨材料在储氢方面取得成功的最大障碍。此外,笼中的碳原子的存在允许将金属碳硼烷连接起来形成金属有机骨架,因此它们能够通过库巴斯相互作用吸附氢,除了范德华物理吸附。