Wong Loksum, Weadick Cameron J, Kuo Claire, Chang Belinda S W, Tropepe Vincent
Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
BMC Dev Biol. 2010 Sep 22;10:100. doi: 10.1186/1471-213X-10-100.
The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome.
Using gene knockdown experiments we examined the function of the dmbx1 gene paralogs in zebrafish, dmbx1a and dmbx1b in regulating neurogenesis in the developing retina and midbrain. Dose-dependent loss of dmbx1a and dmbx1b function causes a significant reduction in growth of the midbrain and retina that is evident between 48-72 hpf. We show that this phenotype is not due to patterning defects or persistent cell death, but rather a deficit in progenitor cell cycle exit and differentiation. Analyses of the morphant retina or anterior hindbrain indicate that paralogous function is partially diverged since loss of dmbx1a is more severe than loss of dmbx1b. Molecular evolutionary analyses of the Dmbx1 genes suggest that while this gene family is conservative in its evolution, there was a dramatic change in selective constraint after the duplication event that gave rise to the dmbx1a and dmbx1b gene families in teleost fish, suggestive of positive selection. Interestingly, in contrast to zebrafish dmbx1a, over expression of the mouse Dmbx1 gene does not functionally compensate for the zebrafish dmbx1a knockdown phenotype, while over expression of the dmbx1b gene only partially compensates for the dmbx1a knockdown phenotype.
Our data suggest that both zebrafish dmbx1a and dmbx1b genes are retained in the fish genome due to their requirement during midbrain and retinal neurogenesis, although their function is partially diverged. At the cellular level, Dmbx1 regulates cell cycle exit and differentiation of progenitor cells. The unexpected observation of putative post-duplication positive selection of teleost Dmbx1 genes, especially dmbx1a, and the differences in functionality between the mouse and zebrafish genes suggests that the teleost Dmbx1 genes may have evolved a diverged function in the regulation of neurogenesis.
Dmbx1基因对中脑和后脑的发育至关重要,小鼠基因靶向实验表明该基因对介导出生后及成年期的摄食行为是必需的。陆生脊椎动物基因组中存在单个Dmbx1基因,而硬骨鱼基因组中至少有两个旁系同源基因。我们比较了斑马鱼dmbx1a和dmbx1b基因的功能缺失情况,以深入了解dmbx1调节神经发生的分子机制,并开始理解为什么这些重复基因会保留在斑马鱼基因组中。
利用基因敲低实验,我们研究了斑马鱼dmbx1基因旁系同源物dmbx1a和dmbx1b在调节发育中的视网膜和中脑神经发生中的功能。dmbx1a和dmbx1b功能的剂量依赖性丧失导致中脑和视网膜生长显著减少,这在48 - 72小时胚胎期(hpf)之间很明显。我们表明这种表型不是由于模式缺陷或持续性细胞死亡,而是祖细胞周期退出和分化的缺陷。对形态突变体视网膜或前脑后部的分析表明,旁系同源物功能部分分化,因为dmbx1a的缺失比dmbx1b的缺失更严重。Dmbx1基因的分子进化分析表明,虽然这个基因家族在进化中是保守的,但在导致硬骨鱼中dmbx1a和dmbx1b基因家族的复制事件后,选择约束发生了显著变化,提示存在正选择。有趣的是,与斑马鱼dmbx1a相反,小鼠Dmbx1基因的过表达不能在功能上补偿斑马鱼dmbx1a敲低表型,而dmbx1b基因的过表达仅部分补偿dmbx1a敲低表型。
我们的数据表明,斑马鱼dmbx1a和dmbx1b基因由于在中脑和视网膜神经发生过程中的需求而保留在鱼类基因组中,尽管它们的功能部分分化。在细胞水平上,Dmbx1调节祖细胞的周期退出和分化。硬骨鱼Dmbx1基因,特别是dmbx1a,在复制后可能存在正选择这一意外观察结果,以及小鼠和斑马鱼基因在功能上的差异表明,硬骨鱼Dmbx1基因在神经发生调节中可能已经进化出了不同的功能。