Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
Curr Hypertens Rep. 2010 Dec;12(6):418-25. doi: 10.1007/s11906-010-0147-x.
Sustained hypertension promotes structural, functional and metabolic remodeling of cardiomyocyte mitochondria. As long-lived, postmitotic cells, cardiomyocytes turn over mitochondria continuously to compensate for changes in energy demands and to remove damaged organelles. This process involves fusion and fission of existing mitochondria to generate new organelles and separate old ones for degradation via autophagy. Autophagy is a lysosome-dependent proteolytic pathway capable of processing cellular components, including organelles and protein aggregates. Autophagy can be either nonselective or selective and contributes to remodeling of the myocardium under stress. Fission of mitochondria, loss of membrane potential, and ubiquitination are emerging as critical steps that direct selective autophagic degradation of mitochondria. This review discusses the molecular mechanisms controlling mitochondrial dynamics, including fission, fusion, transport, and degradation. Furthermore, it examines recent studies revealing the importance of these processes in normal and diseased heart.
持续性高血压可促进心肌细胞线粒体的结构、功能和代谢重构。作为长寿命的有丝分裂后细胞,心肌细胞不断地通过线粒体融合和裂变来更新线粒体,以适应能量需求的变化,并清除受损的细胞器。这个过程涉及到现有线粒体的融合和裂变,以产生新的细胞器,并通过自噬将旧的细胞器分离进行降解。自噬是一种溶酶体依赖性的蛋白水解途径,能够处理包括细胞器和蛋白聚集体在内的细胞成分。自噬可以是非选择性的或选择性的,并有助于应激状态下心肌的重构。线粒体的裂变、膜电位的丧失和泛素化已成为指导线粒体选择性自噬降解的关键步骤。本综述讨论了控制线粒体动力学的分子机制,包括分裂、融合、运输和降解。此外,还研究了最近的研究揭示了这些过程在正常和患病心脏中的重要性。