Suppr超能文献

持续注意力反应任务的实时性能建模。

Real-time performance modelling of a Sustained Attention to Response Task.

机构信息

Centre for Accident Research and Road Safety - Queensland, Queensland University of Technology, Queensland, Australia.

出版信息

Ergonomics. 2010 Oct;53(10):1205-16. doi: 10.1080/00140139.2010.512984.

Abstract

Vigilance declines when exposed to highly predictable and uneventful tasks. Monotonous tasks provide little cognitive and motor stimulation and contribute to human errors. This paper aims to model and detect vigilance decline in real time through participants' reaction times during a monotonous task. A laboratory-based experiment adapting the Sustained Attention to Response Task (SART) is conducted to quantify the effect of monotony on overall performance. Relevant parameters are then used to build a model detecting hypovigilance throughout the experiment. The accuracy of different mathematical models is compared to detect in real time - minute by minute - the lapses in vigilance during the task. It is shown that monotonous tasks can lead to an average decline in performance of 45%. Furthermore, vigilance modelling enables the detection of vigilance decline through reaction times with an accuracy of 72% and a 29% false alarm rate. Bayesian models are identified as a better model to detect lapses in vigilance as compared with neural networks and generalised linear mixed models. This modelling could be used as a framework to detect vigilance decline of any human performing monotonous tasks. STATEMENT OF RELEVANCE: Existing research on monotony is largely entangled with endogenous factors such as sleep deprivation, fatigue and circadian rhythm. This paper uses a Bayesian model to assess the effects of a monotonous task on vigilance in real time. It is shown that the negative effects of monotony on the ability to sustain attention can be mathematically modelled and predicted in real time using surrogate measures, such as reaction times. This allows the modelling of vigilance fluctuations.

摘要

当暴露在高度可预测和无事件的任务中时,警觉性会下降。单调的任务几乎没有提供认知和运动刺激,导致人为错误。本文旨在通过参与者在单调任务中的反应时间实时建模和检测警觉性下降。通过适应持续注意反应任务(SART)的实验室实验,定量研究了单调对整体表现的影响。然后使用相关参数构建一个模型,以在整个实验过程中检测低警觉性。比较了不同数学模型的准确性,以实时检测 - 每分钟 - 任务中警觉性的下降。结果表明,单调任务可能导致性能平均下降 45%。此外,通过反应时间进行警觉性建模可以以 72%的准确率和 29%的误报率检测到警觉性下降。与神经网络和广义线性混合模型相比,贝叶斯模型被确定为检测警觉性下降的更好模型。该模型可以作为检测任何执行单调任务的人类警觉性下降的框架。

相关声明

现有的关于单调的研究在很大程度上与睡眠剥夺、疲劳和昼夜节律等内在因素纠缠在一起。本文使用贝叶斯模型实时评估单调任务对警觉性的影响。结果表明,可以使用替代措施(例如反应时间)实时对单调对维持注意力能力的负面影响进行数学建模和预测。这允许对警觉性波动进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验