Suppr超能文献

匹罗卡品诱导的癫痫大鼠的嗅周皮质兴奋性增高

Perirhinal cortex hyperexcitability in pilocarpine-treated epileptic rats.

机构信息

Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.

出版信息

Hippocampus. 2011 Jul;21(7):702-13. doi: 10.1002/hipo.20785. Epub 2010 Apr 13.

Abstract

The perirhinal cortex (PC), which is heavily connected with several epileptogenic regions of the limbic system such as the entorhinal cortex and amygdala, is involved in the generation and spread of seizures. However, the functional alterations occurring within an epileptic PC network are unknown. Here, we analyzed this issue by using in vitro electrophysiology and immunohistochemistry in brain tissue obtained from pilocarpine-treated epileptic rats and age-matched, nonepileptic controls (NECs). Neurons recorded intracellularly from the PC deep layers in the two experimental groups had similar intrinsic and firing properties and generated spontaneous depolarizing and hyperpolarizing postsynaptic potentials with comparable duration and amplitude. However, spontaneous and stimulus-induced epileptiform discharges were seen with field potential recordings in over one-fifth of pilocarpine-treated slices but never in NEC tissue. These network events were reduced in duration by antagonizing NMDA receptors and abolished by NMDA + non-NMDA glutamatergic receptor antagonists. Pharmacologically isolated isolated inhibitory postsynaptic potentials had reversal potentials for the early GABA(A) receptor-mediated component that were significantly more depolarized in pilocarpine-treated cells. Experiments with a potassium-chloride cotransporter 2 antibody identified, in pilocarpine-treated PC, a significant immunostaining decrease that could not be explained by neuronal loss. However, interneurons expressing parvalbumin and neuropeptide Y were found to be decreased throughout the PC, whereas cholecystokinin-positive cells were diminished in superficial layers. These findings demonstrate synaptic hyperexcitability that is contributed by attenuated inhibition in the PC of pilocarpine-treated epileptic rats and underscore the role of PC networks in temporal lobe epilepsy.

摘要

内嗅皮质(PC)与边缘系统的多个致痫区域如内嗅皮层和杏仁核紧密相连,参与癫痫发作的产生和扩散。然而,癫痫性PC网络内发生的功能改变尚不清楚。在此,我们通过对毛果芸香碱处理的癫痫大鼠及年龄匹配的非癫痫对照(NEC)脑组织进行体外电生理学和免疫组织化学分析来探讨这一问题。在两个实验组中,从PC深层细胞内记录的神经元具有相似的内在特性和放电特性,并产生持续时间和幅度相当的自发性去极化和超极化突触后电位。然而,在超过五分之一的毛果芸香碱处理切片中通过场电位记录观察到自发性和刺激诱导的癫痫样放电,而在NEC组织中从未观察到。通过拮抗NMDA受体可缩短这些网络事件的持续时间,而NMDA +非NMDA谷氨酸能受体拮抗剂可消除这些事件。药理学分离的抑制性突触后电位对早期GABA(A)受体介导成分的反转电位在毛果芸香碱处理的细胞中明显更去极化。用氯化钾共转运体2抗体进行的实验发现,在毛果芸香碱处理的PC中,免疫染色显著降低,这不能用神经元丢失来解释。然而,发现整个PC中表达小白蛋白和神经肽Y的中间神经元减少,而胆囊收缩素阳性细胞在表层减少。这些发现表明,在毛果芸香碱处理的癫痫大鼠的PC中,抑制减弱导致突触兴奋性过高,并强调了PC网络在颞叶癫痫中的作用。

相似文献

1
Perirhinal cortex hyperexcitability in pilocarpine-treated epileptic rats.
Hippocampus. 2011 Jul;21(7):702-13. doi: 10.1002/hipo.20785. Epub 2010 Apr 13.
2
Altered inhibition in lateral amygdala networks in a rat model of temporal lobe epilepsy.
J Neurophysiol. 2006 Apr;95(4):2143-54. doi: 10.1152/jn.01217.2005. Epub 2005 Dec 28.
3
Network hyperexcitability within the deep layers of the pilocarpine-treated rat entorhinal cortex.
J Physiol. 2008 Apr 1;586(7):1867-83. doi: 10.1113/jphysiol.2007.146159. Epub 2008 Jan 31.
4
In vitro ictogenesis and parahippocampal networks in a rodent model of temporal lobe epilepsy.
Neurobiol Dis. 2010 Sep;39(3):372-80. doi: 10.1016/j.nbd.2010.05.003. Epub 2010 May 7.
5
Selective changes in inhibition as determinants for limited hyperexcitability in the insular cortex of epileptic rats.
Eur J Neurosci. 2010 Jun;31(11):2014-23. doi: 10.1111/j.1460-9568.2010.07225.x. Epub 2010 May 24.
7
9
Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro.
Prog Neurobiol. 2002 Oct;68(3):167-207. doi: 10.1016/s0301-0082(02)00077-1.

引用本文的文献

1
Hippocampal Interneurons Shape Spatial Coding Alterations in Neurological Disorders.
Mol Neurobiol. 2025 May 20. doi: 10.1007/s12035-025-05020-2.
2
Dysfunction of the Hippocampal-Lateral Septal Circuit Impairs Risk Assessment in Epileptic Mice.
Front Mol Neurosci. 2022 Apr 29;15:828891. doi: 10.3389/fnmol.2022.828891. eCollection 2022.
4
Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy.
Brain. 2017 Jan;140(1):68-82. doi: 10.1093/brain/aww280. Epub 2016 Nov 15.
6
The piriform, perirhinal, and entorhinal cortex in seizure generation.
Front Neural Circuits. 2015 May 29;9:27. doi: 10.3389/fncir.2015.00027. eCollection 2015.
7
Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic?
Curr Med Chem. 2014;21(6):663-88. doi: 10.2174/0929867320666131119152201.
9
Perirhinal cortex and temporal lobe epilepsy.
Front Cell Neurosci. 2013 Aug 29;7:130. doi: 10.3389/fncel.2013.00130.
10
Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events.
J Neurophysiol. 2013 Mar;109(5):1296-306. doi: 10.1152/jn.00232.2012. Epub 2012 Dec 5.

本文引用的文献

1
Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat.
Hippocampus. 2009 Dec;19(12):1159-86. doi: 10.1002/hipo.20578.
2
Perirhinal cortex supports encoding and familiarity-based recognition of novel associations.
Neuron. 2008 Aug 28;59(4):554-60. doi: 10.1016/j.neuron.2008.07.035.
3
Proepileptic influence of a focal vascular lesion affecting entorhinal cortex-CA3 connections after status epilepticus.
J Neuropathol Exp Neurol. 2008 Jul;67(7):687-701. doi: 10.1097/NEN.0b013e318181b8ae.
4
The pilocarpine model of temporal lobe epilepsy.
J Neurosci Methods. 2008 Jul 30;172(2):143-57. doi: 10.1016/j.jneumeth.2008.04.019. Epub 2008 Apr 26.
5
NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus.
Epilepsy Res. 2008 May;79(2-3):201-12. doi: 10.1016/j.eplepsyres.2008.02.005. Epub 2008 Apr 3.
6
Network hyperexcitability within the deep layers of the pilocarpine-treated rat entorhinal cortex.
J Physiol. 2008 Apr 1;586(7):1867-83. doi: 10.1113/jphysiol.2007.146159. Epub 2008 Jan 31.
8
Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy.
J Neurosci. 2007 Sep 12;27(37):9866-73. doi: 10.1523/JNEUROSCI.2761-07.2007.
9
Rhinal cortex asymmetries in patients with mesial temporal sclerosis.
Seizure. 2008 Apr;17(3):234-46. doi: 10.1016/j.seizure.2007.07.010. Epub 2007 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验