Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Sci Rep. 2011;1:34. doi: 10.1038/srep00034. Epub 2011 Jul 11.
Stochastic motion of a point - known as Brownian motion - has many successful applications in science, thanks to its scale invariance and consequent universal features such as Gaussian fluctuations. In contrast, the stochastic motion of a line, though it is also scale-invariant and arises in nature as various types of interface growth, is far less understood. The two major missing ingredients are: an experiment that allows a quantitative comparison with theory and an analytic solution of the Kardar-Parisi-Zhang (KPZ) equation, a prototypical equation for describing growing interfaces. Here we solve both problems, showing unprecedented universality beyond the scaling laws. We investigate growing interfaces of liquid-crystal turbulence and find not only universal scaling, but universal distributions of interface positions. They obey the largest-eigenvalue distributions of random matrices and depend on whether the interface is curved or flat, albeit universal in each case. Our exact solution of the KPZ equation provides theoretical explanations.
点的随机运动——即布朗运动——由于其标度不变性和随之而来的普遍特征,如高斯涨落,在科学中有许多成功的应用。相比之下,线的随机运动也是标度不变的,并且作为各种类型的界面生长在自然界中出现,但却远未被理解。两个主要的缺失要素是:一个允许与理论进行定量比较的实验,以及卡达诺-帕里西-张(KPZ)方程的解析解,这是描述生长界面的典型方程。在这里,我们解决了这两个问题,展示了超越比例定律的前所未有的普遍性。我们研究了液晶湍流的生长界面,不仅发现了普遍的标度,还发现了界面位置的普遍分布。它们服从随机矩阵的最大特征值分布,并且取决于界面是弯曲的还是平坦的,尽管在每种情况下都是普遍的。我们对 KPZ 方程的精确解提供了理论解释。