Silva J L E, Glancy S, Vasconcelos H M
Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza, Ceará, 60440, Brazil.
Applied and Computational Mathematics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA.
Phys Rev A (Coll Park). 2018 Aug;98(2). doi: 10.1103/PhysRevA.98.022325. Epub 2018 Aug 22.
Quantum state tomography aims to determine the quantum state of a system from measured data and is an essential tool for quantum information science. When dealing with continuous variable quantum states of light, tomography is often done by measuring the field amplitudes at different optical phases using homodyne detection. The quadrature-phase homodyne measurement outputs a continuous variable, so to reduce the computational cost of tomography, researchers often discretize the measurements. We show that this can be done without significantly degrading the fidelity between the estimated state and the true state. This paper studies different strategies for determining the histogram bin widths. We show that computation time can be significantly reduced with little loss in the fidelity of the estimated state when the measurement operators corresponding to each histogram bin are integrated over the bin width.
量子态层析成像旨在根据测量数据确定系统的量子态,是量子信息科学的一项重要工具。在处理光的连续变量量子态时,层析成像通常通过使用零差检测在不同光学相位测量场振幅来完成。正交相位零差测量输出一个连续变量,因此为了降低层析成像的计算成本,研究人员经常对测量进行离散化处理。我们表明,这样做不会显著降低估计态与真实态之间的保真度。本文研究了确定直方图箱宽的不同策略。我们表明,当对每个直方图箱对应的测量算子在箱宽上进行积分时,计算时间可以显著减少,而估计态的保真度损失很小。