Suppr超能文献

最大似然量子态层析成像中的正交直方图

Quadrature histograms in maximum-likelihood quantum state tomography.

作者信息

Silva J L E, Glancy S, Vasconcelos H M

机构信息

Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza, Ceará, 60440, Brazil.

Applied and Computational Mathematics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA.

出版信息

Phys Rev A (Coll Park). 2018 Aug;98(2). doi: 10.1103/PhysRevA.98.022325. Epub 2018 Aug 22.

Abstract

Quantum state tomography aims to determine the quantum state of a system from measured data and is an essential tool for quantum information science. When dealing with continuous variable quantum states of light, tomography is often done by measuring the field amplitudes at different optical phases using homodyne detection. The quadrature-phase homodyne measurement outputs a continuous variable, so to reduce the computational cost of tomography, researchers often discretize the measurements. We show that this can be done without significantly degrading the fidelity between the estimated state and the true state. This paper studies different strategies for determining the histogram bin widths. We show that computation time can be significantly reduced with little loss in the fidelity of the estimated state when the measurement operators corresponding to each histogram bin are integrated over the bin width.

摘要

量子态层析成像旨在根据测量数据确定系统的量子态,是量子信息科学的一项重要工具。在处理光的连续变量量子态时,层析成像通常通过使用零差检测在不同光学相位测量场振幅来完成。正交相位零差测量输出一个连续变量,因此为了降低层析成像的计算成本,研究人员经常对测量进行离散化处理。我们表明,这样做不会显著降低估计态与真实态之间的保真度。本文研究了确定直方图箱宽的不同策略。我们表明,当对每个直方图箱对应的测量算子在箱宽上进行积分时,计算时间可以显著减少,而估计态的保真度损失很小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d17a/6463478/51b3cf072c80/nihms-1508136-f0001.jpg

相似文献

1
Quadrature histograms in maximum-likelihood quantum state tomography.最大似然量子态层析成像中的正交直方图
Phys Rev A (Coll Park). 2018 Aug;98(2). doi: 10.1103/PhysRevA.98.022325. Epub 2018 Aug 22.
2
Investigating bias in maximum-likelihood quantum-state tomography.研究最大似然量子态层析成像中的偏差。
Phys Rev A (Coll Park). 2017 Feb;95(2). doi: 10.1103/PhysRevA.95.022107. Epub 2017 Feb 8.

本文引用的文献

2
Experimental comparison of two quantum computing architectures.两种量子计算架构的实验比较。
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3305-3310. doi: 10.1073/pnas.1618020114. Epub 2017 Mar 21.
3
Realization of a scalable Shor algorithm.可扩展 Shor 算法的实现。
Science. 2016 Mar 4;351(6277):1068-70. doi: 10.1126/science.aad9480.
9
Quantum calibration of measurement instrumentation.测量仪器的量子校准。
Phys Rev Lett. 2004 Dec 17;93(25):250407. doi: 10.1103/PhysRevLett.93.250407. Epub 2004 Dec 16.
10
Quantum process tomography of a controlled-NOT gate.受控非门的量子过程层析成像。
Phys Rev Lett. 2004 Aug 20;93(8):080502. doi: 10.1103/PhysRevLett.93.080502.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验