Applied Physics, Caltech, Pasadena, California 91125, USA.
Phys Rev Lett. 2010 Sep 17;105(12):124301. doi: 10.1103/PhysRevLett.105.124301. Epub 2010 Sep 14.
In systems where one coordinate undergoes periodic oscillation, the net displacement in any other coordinate over a single period is shown to be given by differentiation of the action integral associated with the oscillating coordinate. This result is then used to demonstrate that the action integral acts as a Hamiltonian for slow coordinates providing time is scaled to the "tick time" of the oscillating coordinate. Numerous examples, including charged particle drifts and relativistic motion, are supplied to illustrate the varied application of these results.
在一个坐标经历周期性振荡的系统中,经过一个周期后,任何其他坐标的净位移都可以通过对与振荡坐标相关的作用积分进行微分得到。然后,利用这一结果证明,作用积分可以作为慢坐标的哈密顿量,只要时间按照振荡坐标的“滴答时间”进行缩放。提供了许多示例,包括带电粒子漂移和相对论运动,以说明这些结果的各种应用。