Computational Physics for Engineering Materials, ETH Zurich, Schafmattstr. 6, HIF, CH-8093 Zurich, Switzerland.
Phys Rev Lett. 2010 Aug 6;105(6):068101. doi: 10.1103/PhysRevLett.105.068101. Epub 2010 Aug 3.
We investigate the morphology of thin discs and rings growing in the circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric e cone solution is energetically minimal any more. Instead, we obtain skewed e cone solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.
我们研究了在圆周方向生长的薄盘和环的形态。最近的分析结果表明,这种生长会产生对称的过剩锥(e 锥)。我们考虑自接触和弯曲应力来研究这种解的稳定性。我们表明,与之前的分析解所假设的相反,超过一个临界生长因子后,不再存在能量最小的对称 e 锥解。相反,我们得到了倾斜的 e 锥解,其能量更低,具有倾斜角和随生长而增加的重复螺旋缠绕。这些结果被推广到具有不同厚度的圆盘和具有不同半径孔的环。