Suppr超能文献

用于模型更新图像引导神经外科手术的三维异构脑计算的初步体内分析。

Initial In-Vivo Analysis of 3D Heterogeneous Brain Computations for Model-Updated Image-Guided Neurosurgery.

作者信息

Miga Michael, Paulsen Keith, Kennedy Francis, Hoopes Jack, Hartov Alex, Roberts David

机构信息

Dartmouth College, Thayer School of Engineering, HB8000, Hanover, NH 03755, http://www.thayer.dartmouth.edu/thayer/

Dartmouth Hitchcock Medical Center, Lebanon, NH 03756.

出版信息

Med Image Comput Comput Assist Interv. 1998 Oct;1496:743-752. doi: 10.1007/BFb0056261.

Abstract

Registration error resulting from intraoperative brain shift due to applied surgical loads has long been recognized as one of the most challenging problems in the field of frameless stereotactic neurosurgery. To address this problem, we have developed a 3-dimensional finite element model of the brain and have begun to quantify its predictive capability in an porcine model. Previous studies have shown that we can predict the average total displacement within 15% and 6.6% error using intraparenchymal and temporal deformation sources, respectively, under relatively simple model assumptions. In this paper, we present preliminary results using a heterogeneous model with an expanding temporally located mass and show that we are capable of predicting an average total displacement to 5.7% under similar model initial and boundary conditions. We also demonstrate that our approach can be viewed as having the capability of recapturing approximately 75% of the registration inaccuracy that may be generated by preoperative-based image-guided neurosurgery.

摘要

由于手术负荷导致的术中脑移位所引起的配准误差,长期以来一直被认为是无框架立体定向神经外科领域中最具挑战性的问题之一。为了解决这个问题,我们开发了一个大脑的三维有限元模型,并已开始在猪模型中量化其预测能力。先前的研究表明,在相对简单的模型假设下,我们分别使用脑实质内和颞部变形源,能够以15%和6.6%的误差预测平均总位移。在本文中,我们展示了使用具有随时间扩展肿块的异质模型的初步结果,并表明在类似的模型初始条件和边界条件下,我们能够将平均总位移预测到5.7%。我们还证明,我们的方法可以被视为能够重新捕捉术前基于图像引导的神经外科手术可能产生的约75%的配准误差。

相似文献

6
In Vivo Analysis of Heterogeneous Brain Deformation Computations for Model-Updated Image Guidance.
Comput Methods Biomech Biomed Engin. 2000;3(2):129-146. doi: 10.1080/10255840008915260.

引用本文的文献

2
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
7
An atlas-based method to compensate for brain shift: preliminary results.一种基于图谱的脑移位补偿方法:初步结果。
Med Image Anal. 2007 Apr;11(2):128-45. doi: 10.1016/j.media.2006.11.002. Epub 2007 Mar 1.

本文引用的文献

6
Calculation of brain elastic parameters in vivo.体内脑弹性参数的计算。
Am J Physiol. 1984 Oct;247(4 Pt 2):R693-700. doi: 10.1152/ajpregu.1984.247.4.R693.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验