Mushayabasa S, Tchuenche J M, Bhunu C P, Ngarakana-Gwasira E
Department of Applied Mathematics, Modelling Biomedical Systems Research Group, National University of Science and Technology, Ascot, Bulawayo, Zimbabwe.
Biosystems. 2011 Jan;103(1):27-37. doi: 10.1016/j.biosystems.2010.09.008. Epub 2010 Oct 1.
A mathematical model was designed to explore the co-interaction of gonorrhea and HIV in the presence of antiretroviral therapy and gonorrhea treatment. Qualitative and comprehensive mathematical techniques have been used to analyse the model. The gonorrhea-only and HIV-only sub-models are first considered. Analytic expressions for the threshold parameter in each sub-model and the co-interaction model are derived. Global dynamics of this co-interaction shows that whenever the threshold parameter for the respective sub-models and co-interaction model is less than unity, the epidemics dies out, while the reverse results in persistence of the epidemics in the community. The impact of gonorrhea and its treatment on HIV dynamics is also investigated. Numerical simulations using a set of reasonable parameter values show that the two epidemics co-exists whenever their reproduction numbers exceed unity (with no competitive exclusion). Further, simulations of the full HIV-gonorrhea model also suggests that an increase in the number of individuals infected with gonorrhea (either singly or dually with HIV) in the presence of treatment results in a decrease in gonorrhea-only cases, dual-infection cases but increases the number of HIV-only cases.
设计了一个数学模型,以探讨在抗逆转录病毒疗法和淋病治疗存在的情况下淋病和艾滋病毒的共同相互作用。已使用定性和综合数学技术来分析该模型。首先考虑仅淋病和仅艾滋病毒的子模型。推导了每个子模型和共同相互作用模型中阈值参数的解析表达式。这种共同相互作用的全局动态表明,只要各个子模型和共同相互作用模型的阈值参数小于1,流行病就会消失,而相反的情况则会导致社区中流行病的持续存在。还研究了淋病及其治疗对艾滋病毒动态的影响。使用一组合理参数值进行的数值模拟表明,只要两种流行病的繁殖数超过1(无竞争排斥),它们就会共存。此外,完整的艾滋病毒-淋病模型的模拟还表明,在有治疗的情况下,感染淋病的个体数量(单独感染或与艾滋病毒双重感染)的增加会导致仅淋病病例、双重感染病例减少,但会增加仅艾滋病毒病例的数量。